

The LMC bar pattern speed

Image(s) credit: Ó. Jiménez-Arranz Available at <u>www.oscarjimenezarranz.com</u> Óscar Jiménez Arranz Lund University

SMC

10% M_{MW}

Dwarf spiral galaxy

10% M_{MW}

10% M_{MW}

SMC

Distorted shape

1% M_{MW}

Dwarf irregular galaxy

SMC

Distorted shape

Magellanic Bridge

1% M_{MW}

Dwarf irregular galaxy

What makes the XMC interesting?

What makes the XMC interesting?

- The closest galaxies to the MW

What makes the XMC interesting?

- The closest galaxies to the MW (astrometric information for million stars)

SMC

What makes the XMC interesting?

- The closest galaxies to the MW (astrometric information for million stars)

Across the whole disc!

What makes the XMC interesting?

- The closest galaxies to the MW (astrometric information for million stars)
- In strong interaction between them

What makes the XMC interesting?

- The closest galaxies to the MW (astrometric information for million stars)
- In strong interaction between them

The XMC are the perfect laboratory for testing methodologies and models designed for the study of external and interacting galaxies

Outline

- Motivation
- Context and Goals
- Results
- Conclusions

Outline

- Motivation
- Context and Goals
- Results
- Conclusions

Gaia (2013 - 2025) provides astrometric, photometric (and spectroscopic) data for almost 2.000M stars.

Gaia (2013 - 2025) provides astrometric, photometric (and spectroscopic) data for almost 2.000M stars (1% of the MW stars).

Gaia (2013 - 2025) provides astrometric, photometric (and spectroscopic) data for almost 2.000M stars (1% of the MW stars).

Predecessor: Hipparcos (1989) with 100k stars.

Gaia (2013 - 2025) provides astrometric, photometric (and spectroscopic) data for almost 2.000M stars (1% of the MW stars).

Predecessor: Hipparcos (1989) with 100k stars. Ratio of 1: 20.000 (!!!)

Hipparcos

GAIA'S REACH

The Gaia spacecraft will use parallax and ultra-precise position measurements to obtain the distances and 'proper' (sideways) motions of stars throughout much of the Milky Way, seen here edge-on. Data from Gaia will shed light on the Galaxy's history, structure and dynamics.

Previous missions could measurel stellar distances with an accuracy of 10% only up to 100 parsecs* LSun

Galactic Centre

Gaia

GAIA'S REACH

The Gaia spacecraft will use parallax and ultra-precise position measurements to obtain the distances and 'proper' (sideways) motions of stars throughout much of the Milky Way, seen here edge-on. Data from Gaia will shed light on the Galaxy's history, structure and dynamics.

LSun

Previous missions could measurel stellar distances with an accuracy of 10% only up to 100 parsecs* Galactic Centre

Gaia

Credit: Data: ESA/Gaia/DPAC, A. Khalatyan (AIP) & StarHorse team; Galaxy map: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

- Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)
 - Neural network classifier for the selection of clean LMC samples

- Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)
 - Neural network classifier for the selection of clean LMC samples

- Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)
 - Neural network classifier for the selection of clean LMC samples

 Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)

 Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)

- Neural Network
 - Input: Gaia astrometry and photometry (11 variables)
 - Output: Probability P of being a LMC star

- Neural Network
 - Input: Gaia astrometry and photometry (11 variables)
 - Output: Probability P of being a LMC star

- Neural Network
 - Input: Gaia astrometry and photometry (11 variables)
 - Output: Probability P of being a LMC star

- Neural Network
 - Input: Gaia astrometry and photometry (11 variables)
 - Output: Probability P of being a LMC star

We propose three different samples:

- LMC Complete sample [P > 0.01]
- LMC Optimal sample [P > 0.52]
- LMC Truncated-Optimal sample [P > 0.52 + G < 19.5]

- Neural Network Complete LNC cample -75

 - optimale F

Inctruncated Espiral Sample Continual Sample

18M stars (LMC+MW)

12M stars

Optimal sample

6M stars

18M stars (LMC+MW)

12M stars

10M stars

6M stars

- Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)
 - Neural network classifier for the selection of clean LMC samples

- Kinematic analysis of the Large Magellanic Cloud using Gaia DR3 (Ó. Jiménez-Arranz et al. 2023a)
 - Neural network classifier for the selection of clean LMC samples
 - Kinematic analysis of the LMC in-plane velocities

LMC plane ("face-on view") (Ó. Jiménez-Arranz et al. 2023a) on of clean LMC samples LMC Neural network class center $i \approx 30^{\circ}$ Tangential sky plane Observer

optimal sample

Radial velocity

Confirmation of the **quadrupole** trend in the **bar**. It is **asymmetric**.

In the part of the **arm** attached to the bar, **inward motion** and a **rotation faster** than that of the disc.

- The bar pattern speed of the Large Magellanic Cloud (Ó. Jiménez-Arranz et al. 2024a)
 - Three different methods to infer the LMC bar pattern speed: (using Gaia proper motions and Vlos)
 - Tremaine and Weinberg method (1984)
 - Bisymmetric model of the tangential velocity (Gaia Collaboration, Drimmel, et al 2022)
 - Dehnen method (2023)

- Tested on simulations before applied to the LMC clean sample(s):
 - B5 (S. Roca-Fàbrega+13): isolated MW-like galaxy
 - KRATOS (ó. Jiménez-Arranz+24b): interacting LMC-like galaxy

$$\Omega_p \sin i = \frac{\langle V_{\text{los}} \rangle}{\langle X \rangle}$$

$$\Omega_p = \frac{\langle v_y \rangle}{\langle x \rangle}$$

Line-of-sight velocity version (30k stars)

$\Omega_p = rac{\langle v_y \rangle}{\langle x \rangle}$

Tremaine and Weinberg method

$\Omega_p = \frac{\langle v_y \rangle}{\langle x \rangle}$

Tremaine and Weinberg method

$\Omega_p = \frac{\langle v_y \rangle}{\langle x \rangle}$

Tremaine and Weinberg method

$$\Omega_p = \frac{\langle v_y \rangle}{\langle x \rangle}$$

$$\Omega_p = \frac{\langle v_y \rangle}{\langle x \rangle}$$

Not able to recover the simulations' bar pattern speed

Bisymmetric model of the tangential velocity

Empirical model to find the corotation radius Rc

Recovers well the simulations' bar pattern speed

Dehnen method

- Intended for single snapshots simulations
- Modification of the TW method, where the bar region is masked

Recovers well the simulations' bar pattern speed

Outline

- Motivation
- Context and Goals
- Results
- Conclusions

Tremaine and Weinberg method (applied to the LMC)

Line-of-sight velocity version (30k stars)

Bisymmetric model of the tangential velocity (applied to the LMC)

 $R_c = 4.20 \pm 0.25 \text{ kpc}$

 $\Omega_p = 18.5^{+1.2}_{-1.1} \text{ km s}^{-1} \text{ kpc}^{-1}$

Dehnen method (applied to the LMC)

The LMC may be hosting a non-rotating bar!

Dehnen method (applied to the LMC)

- Found in numerical simulations, but for very specific configurations (Collier & Madigan 2023)
- Possible external origin: interaction with the SMC and/or the MW
- An almost non-rotating LMC bar would indeed not show any corotation within the disc
- Result sensible to:
 - Dust extinction / completeness
 - Counter-rotating m=1 mode

- Tidal interaction can stop galactic bars: on the LMC non-rotating bar (Ó. Jiménez-Arranz and S. Roca-Fàbrega 2025b)
 - We found that 2 simulations of the KRATOS suite (Jiménez-Arranz+24a) present an LMC-like galaxy with stopped bar due to the interaction with the SMC
 - Bar pattern speed derived:
 - 1) Finite differences
 - 2) Dehnen method

Conclusions

- Gaia DR3 provides more than 10 millions LMC stars with proper motion information
- Three different methods provide three different LMC bar pattern speed
- The Dehnen methods recovers an almost non-rotating bar
- The KRATOS suite of simulations shows that this may be possible due to the recent LMC-SMC interaction

