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Tack, Oscar!  Merci, Florent!

 ➤ You are not only my closest 
collaborators and dearest friends, 
but also part of my family ❤ ❤

 ➤ And many thanks to all of you 
for participating in such an 
amazing workshop!  GRAZIE !!



The specific angular momentum

 ● j ≡ J/M is one of the most fundamental galaxy 
properties!

 ➤ Measuring and analysing j allows relating the 
dynamics of present-day galaxies to models of 
galaxy formation and evolution (see, e.g., 
Combes 2020; Obreschkow 2020).



j for the ‘baryons’ (= stars + atomic gas)

 ● jb has been measured for disc galaxies of all 
morphological types: from lenticulars to blue 
compact dwarfs.

 ➤ We use high-quality data with a wide 
dynamic range from the SPARC and the LITTLE 
THINGS galaxy samples (Read et al. 2017; Posti 
et al. 2018, 2019; Mancera Piña et al. 2021).



j for the dark matter halo

 ● jh is not a truly observable galaxy property, but 
we ‘measure’ jh via two fundamental relations:

 ➤ 

 ➤ 
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radius, and by including the contribution of helium to the atomic 
gas mass through a correction factor (1.33). j H I was also measured 
via radial integration, imposing a convergence criterion on the 
cumulative j H I ( < R ) profile. By construction, j H I (like j ! ) includes 
the contribution of bars and other non-axisymmetric structures only 
in an azimuthally averaged sense, consistent with the assumptions 
behind the analysis carried out in this paper. 

Note that all such measurements are based on high-quality ro- 
tation curves that were derived from the same type of data (H I 
interferometric observations) using consistent techniques (tilted ring 
models). Therefore, we do not e xpect an y significant bias. Using such 
measurements, we compute the baryonic mass, M b , and the baryonic 
specific angular momentum, j b ≡ J b / M b , as 
M b = M ! + M H I , (1) 
j b = j ! M ! + j H I M H I 

M ! + M H I . (2) 
We neglect the contribution of molecular gas because it is relatively 
small (e.g. Mancera Pi ̃ na et al. 2021b ), and because CO data are not 
available for most galaxies of our sample (e.g. Hunter et al. 2012 ; 
Lelli et al. 2016 ). 

Another quantity that is of key importance for our analysis is the 
halo specific angular momentum, j h ≡ J h / M h . Since this is not a 
truly observable galaxy property, it is common practice to ‘measure’ 
j h via the relation j h ∝ λ M 2 / 3 h , where λ is the halo spin parameter 
(e.g. Romanowsk y & F all 2012 ; Obreschkow & Glazebrook 2014 ; 
Lapi et al. 2018 ; Okamura, Shimasaku & Kawamata 2018 ). This is 
moti v ated by the fact that, in contrast to j h itself, λ has been tightly 
constrained by # CDM simulations. In fact, λ is well characterized 
by a lognormal probability distribution, 
p( λ) d λ = 1 √ 

2 πσ
exp [− ( ln λ − ln λ0 ) 2 

2 σ 2 
]

d λ
λ

, (3) 
whose median λ0 ≈ 0.035 and width σ ≈ 0.50 (0.22 dex) do 
not depend significantly on halo mass, redshift, environment, or 
cosmology (e.g. Bullock et al. 2001 ; Macci ̀o, Dutton & van den 
Bosch 2007 , 2008 ; Rodr ́ıguez-Puebla et al. 2016 ; Zjupa & Springel 
2017 ). In view of this fact, we too measure j h via the j h ∝ λ M 2 / 3 h 
relation, which is fully specified by equation ( 3 ) and the following 
equations: 
j h = √ 

2 λ R vir V vir , (4) 
R vir = ( 2 

& c GM h 
H 2 0 

)1 / 3 
, (5) 

V vir = (GM h 
R vir 

)1 / 2 
. (6) 

Here λ is the halo spin parameter redefined by Bullock et al. 
( 2001 ) that we have discussed abo v e, R vir and V vir are the halo 
virial radius and velocity (see, e.g. Cimatti et al. 2020 ), & c is the 
critical o v erdensity for virialization, H 0 is the Hubble constant, 
and G is the gravitational constant. More specifically, we set H 0 = 
67 . 4 km s −1 Mpc −1 (Planck Collaboration VI 2020 ) and & c = 200 
in equation ( 5 ), λ0 = 0.035 and σ = 0.50 (0.22 dex) in equation ( 3 ), 
and make use of this equation to randomly generate one value of λ
for each galaxy of our sample. We then compute j h from equation ( 4 ). 

Our approach departs from the common practice of using the 
same value of λ for all the galaxies of the sample ( λ = λ0 ), so we 
have tested it in Appendix B . Our test demonstrates that varying 
the random realization of λ has a weak ( ! 10 per cent ) effect on the 
results, whereas suppressing the natural variance of λ artificially 

constrains the correlations between j h and other fundamental galaxy 
properties like M h and M b (see Fig. B1 ). 

In addition to the key quantities specified abo v e, we need to 
quantify the morphological type of each galaxy, and to know whether 
a galaxy is barred or non-barred. The morphological type is taken 
from Lelli et al. ( 2016 ) for SPARC galaxies and from Hunter 
et al. ( 2012 ) for LITTLE THINGS galaxies. Information about the 
presence/absence of a bar is missing from the two references abo v e. 
Therefore, we extract it from HyperLeda (Makarov et al. 2014 ), 
and classify the galaxies of our sample as ‘barred’ (43 per cent) 
or ‘non-barred’ (47 per cent) on the basis of works referenced in 
that data base, most notably: (i) the ‘Third Reference Catalogue 
of Bright Galaxies’ (RC3; de Vaucouleurs et al. 1991 ), which is 
the primary frame of reference for morphological classification of 
galaxies; and (ii) the ‘Galaxy Zoo 2’ (GZ2; Willett et al. 2013 ), which 
is a citizen science project with morphological classifications of more 
than 300 000 galaxies drawn from the Sloan Digital Sky Survey 
(SDSS). For some galaxies, no consensus has been reached, so we 
classify them as ‘uncertain’ (10 per cent). The fractions of barred 
and non-barred galaxies that characterize our sample are consistent 
with those found by G ́eron et al. ( 2021 ) using the newest version of 
Galaxy Zoo, and with their finding that there is a continuum of bar 
types, which varies from ‘weakest’ to ‘strongest’. 1 
2.3 Statistics 
To extract reliable information from our data, we use a variety of 
statistical diagnostics, particularly several robust statistics. These 
are especially useful when the data are few or contain a significant 
fraction of outliers, or even when the data deviate significantly from 
a normal distribution (see, e.g. Rousseeuw 1991 ; Press et al. 1992 , 
chap. 15.7). Two eloquent examples of robust statistics are the median 
and the median absolute deviation (MAD), which provide reliable 
estimates of the ‘central value’ and the ‘width’ of a data set even 
when almost 50 per cent of the data are outliers, contrary to the mean 
and the standard deviation. Another example of robust statistical 
methods is fitting a line to a set of data points by minimizing their 
average absolute deviation from the line, a problem that is solved by 
computing the median of the deviations (see pp. 698–700 of Press 
et al. 1992 ). If the data contain outliers, which is almost al w ays the 
case, then such ‘robust median-based’ fitting provides more reliable 
results than linear least-squares fitting (see figs 3–7 of Rousseeuw 
1991 , and fig. 15.7.1 of Press et al. 1992 ). Robust statistics are used 
not only in the statistical description and modelling of scientific 
data (see, e.g. Feigelson & Babu 2012 ), but also in data processing, 
where they are an integral part of widespread techniques like Kalman 
filtering, median filtering, and wavelet-based denoising (see, e.g. 
Romeo 2021 ). 

In this paper, we model the data using robust median-based 
fits (subroutine MEDFIT.F from Press et al. 1992 ), and measure 
the dispersion of the data points around the model using a robust 
estimator of the 1 σ scatter: 
SD rob = 1 

0 . 6745 × MAD , (7) 

1 It is worth mentioning that all current methods of bar detection are subject to 
se veral observ ational ef fects dif ficult to quantify (bandpass, spatial resolution, 
imaging depth, etc.), and that there is an ongoing effort to e v aluate and 
minimize such effects (e.g. Willett et al. 2013 ; Consolandi 2016 ; Abraham 
et al. 2018 ; G ́eron et al. 2021 ). 
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radius, and by including the contribution of helium to the atomic 
gas mass through a correction factor (1.33). j H I was also measured 
via radial integration, imposing a convergence criterion on the 
cumulative j H I ( < R ) profile. By construction, j H I (like j ! ) includes 
the contribution of bars and other non-axisymmetric structures only 
in an azimuthally averaged sense, consistent with the assumptions 
behind the analysis carried out in this paper. 

Note that all such measurements are based on high-quality ro- 
tation curves that were derived from the same type of data (H I 
interferometric observations) using consistent techniques (tilted ring 
models). Therefore, we do not e xpect an y significant bias. Using such 
measurements, we compute the baryonic mass, M b , and the baryonic 
specific angular momentum, j b ≡ J b / M b , as 
M b = M ! + M H I , (1) 
j b = j ! M ! + j H I M H I 

M ! + M H I . (2) 
We neglect the contribution of molecular gas because it is relatively 
small (e.g. Mancera Pi ̃ na et al. 2021b ), and because CO data are not 
available for most galaxies of our sample (e.g. Hunter et al. 2012 ; 
Lelli et al. 2016 ). 

Another quantity that is of key importance for our analysis is the 
halo specific angular momentum, j h ≡ J h / M h . Since this is not a 
truly observable galaxy property, it is common practice to ‘measure’ 
j h via the relation j h ∝ λ M 2 / 3 h , where λ is the halo spin parameter 
(e.g. Romanowsk y & F all 2012 ; Obreschkow & Glazebrook 2014 ; 
Lapi et al. 2018 ; Okamura, Shimasaku & Kawamata 2018 ). This is 
moti v ated by the fact that, in contrast to j h itself, λ has been tightly 
constrained by # CDM simulations. In fact, λ is well characterized 
by a lognormal probability distribution, 
p( λ) d λ = 1 √ 

2 πσ
exp [− ( ln λ − ln λ0 ) 2 

2 σ 2 
]

d λ
λ

, (3) 
whose median λ0 ≈ 0.035 and width σ ≈ 0.50 (0.22 dex) do 
not depend significantly on halo mass, redshift, environment, or 
cosmology (e.g. Bullock et al. 2001 ; Macci ̀o, Dutton & van den 
Bosch 2007 , 2008 ; Rodr ́ıguez-Puebla et al. 2016 ; Zjupa & Springel 
2017 ). In view of this fact, we too measure j h via the j h ∝ λ M 2 / 3 h 
relation, which is fully specified by equation ( 3 ) and the following 
equations: 
j h = √ 

2 λ R vir V vir , (4) 
R vir = ( 2 

& c GM h 
H 2 0 

)1 / 3 
, (5) 

V vir = (GM h 
R vir 

)1 / 2 
. (6) 

Here λ is the halo spin parameter redefined by Bullock et al. 
( 2001 ) that we have discussed abo v e, R vir and V vir are the halo 
virial radius and velocity (see, e.g. Cimatti et al. 2020 ), & c is the 
critical o v erdensity for virialization, H 0 is the Hubble constant, 
and G is the gravitational constant. More specifically, we set H 0 = 
67 . 4 km s −1 Mpc −1 (Planck Collaboration VI 2020 ) and & c = 200 
in equation ( 5 ), λ0 = 0.035 and σ = 0.50 (0.22 dex) in equation ( 3 ), 
and make use of this equation to randomly generate one value of λ
for each galaxy of our sample. We then compute j h from equation ( 4 ). 

Our approach departs from the common practice of using the 
same value of λ for all the galaxies of the sample ( λ = λ0 ), so we 
have tested it in Appendix B . Our test demonstrates that varying 
the random realization of λ has a weak ( ! 10 per cent ) effect on the 
results, whereas suppressing the natural variance of λ artificially 

constrains the correlations between j h and other fundamental galaxy 
properties like M h and M b (see Fig. B1 ). 

In addition to the key quantities specified abo v e, we need to 
quantify the morphological type of each galaxy, and to know whether 
a galaxy is barred or non-barred. The morphological type is taken 
from Lelli et al. ( 2016 ) for SPARC galaxies and from Hunter 
et al. ( 2012 ) for LITTLE THINGS galaxies. Information about the 
presence/absence of a bar is missing from the two references abo v e. 
Therefore, we extract it from HyperLeda (Makarov et al. 2014 ), 
and classify the galaxies of our sample as ‘barred’ (43 per cent) 
or ‘non-barred’ (47 per cent) on the basis of works referenced in 
that data base, most notably: (i) the ‘Third Reference Catalogue 
of Bright Galaxies’ (RC3; de Vaucouleurs et al. 1991 ), which is 
the primary frame of reference for morphological classification of 
galaxies; and (ii) the ‘Galaxy Zoo 2’ (GZ2; Willett et al. 2013 ), which 
is a citizen science project with morphological classifications of more 
than 300 000 galaxies drawn from the Sloan Digital Sky Survey 
(SDSS). For some galaxies, no consensus has been reached, so we 
classify them as ‘uncertain’ (10 per cent). The fractions of barred 
and non-barred galaxies that characterize our sample are consistent 
with those found by G ́eron et al. ( 2021 ) using the newest version of 
Galaxy Zoo, and with their finding that there is a continuum of bar 
types, which varies from ‘weakest’ to ‘strongest’. 1 
2.3 Statistics 
To extract reliable information from our data, we use a variety of 
statistical diagnostics, particularly several robust statistics. These 
are especially useful when the data are few or contain a significant 
fraction of outliers, or even when the data deviate significantly from 
a normal distribution (see, e.g. Rousseeuw 1991 ; Press et al. 1992 , 
chap. 15.7). Two eloquent examples of robust statistics are the median 
and the median absolute deviation (MAD), which provide reliable 
estimates of the ‘central value’ and the ‘width’ of a data set even 
when almost 50 per cent of the data are outliers, contrary to the mean 
and the standard deviation. Another example of robust statistical 
methods is fitting a line to a set of data points by minimizing their 
average absolute deviation from the line, a problem that is solved by 
computing the median of the deviations (see pp. 698–700 of Press 
et al. 1992 ). If the data contain outliers, which is almost al w ays the 
case, then such ‘robust median-based’ fitting provides more reliable 
results than linear least-squares fitting (see figs 3–7 of Rousseeuw 
1991 , and fig. 15.7.1 of Press et al. 1992 ). Robust statistics are used 
not only in the statistical description and modelling of scientific 
data (see, e.g. Feigelson & Babu 2012 ), but also in data processing, 
where they are an integral part of widespread techniques like Kalman 
filtering, median filtering, and wavelet-based denoising (see, e.g. 
Romeo 2021 ). 

In this paper, we model the data using robust median-based 
fits (subroutine MEDFIT.F from Press et al. 1992 ), and measure 
the dispersion of the data points around the model using a robust 
estimator of the 1 σ scatter: 
SD rob = 1 

0 . 6745 × MAD , (7) 

1 It is worth mentioning that all current methods of bar detection are subject to 
se veral observ ational ef fects dif ficult to quantify (bandpass, spatial resolution, 
imaging depth, etc.), and that there is an ongoing effort to e v aluate and 
minimize such effects (e.g. Willett et al. 2013 ; Consolandi 2016 ; Abraham 
et al. 2018 ; G ́eron et al. 2021 ). 
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radius, and by including the contribution of helium to the atomic 
gas mass through a correction factor (1.33). j H I was also measured 
via radial integration, imposing a convergence criterion on the 
cumulative j H I ( < R ) profile. By construction, j H I (like j ! ) includes 
the contribution of bars and other non-axisymmetric structures only 
in an azimuthally averaged sense, consistent with the assumptions 
behind the analysis carried out in this paper. 

Note that all such measurements are based on high-quality ro- 
tation curves that were derived from the same type of data (H I 
interferometric observations) using consistent techniques (tilted ring 
models). Therefore, we do not e xpect an y significant bias. Using such 
measurements, we compute the baryonic mass, M b , and the baryonic 
specific angular momentum, j b ≡ J b / M b , as 
M b = M ! + M H I , (1) 
j b = j ! M ! + j H I M H I 

M ! + M H I . (2) 
We neglect the contribution of molecular gas because it is relatively 
small (e.g. Mancera Pi ̃ na et al. 2021b ), and because CO data are not 
available for most galaxies of our sample (e.g. Hunter et al. 2012 ; 
Lelli et al. 2016 ). 

Another quantity that is of key importance for our analysis is the 
halo specific angular momentum, j h ≡ J h / M h . Since this is not a 
truly observable galaxy property, it is common practice to ‘measure’ 
j h via the relation j h ∝ λ M 2 / 3 h , where λ is the halo spin parameter 
(e.g. Romanowsk y & F all 2012 ; Obreschkow & Glazebrook 2014 ; 
Lapi et al. 2018 ; Okamura, Shimasaku & Kawamata 2018 ). This is 
moti v ated by the fact that, in contrast to j h itself, λ has been tightly 
constrained by # CDM simulations. In fact, λ is well characterized 
by a lognormal probability distribution, 
p( λ) d λ = 1 √ 

2 πσ
exp [− ( ln λ − ln λ0 ) 2 

2 σ 2 
]

d λ
λ

, (3) 
whose median λ0 ≈ 0.035 and width σ ≈ 0.50 (0.22 dex) do 
not depend significantly on halo mass, redshift, environment, or 
cosmology (e.g. Bullock et al. 2001 ; Macci ̀o, Dutton & van den 
Bosch 2007 , 2008 ; Rodr ́ıguez-Puebla et al. 2016 ; Zjupa & Springel 
2017 ). In view of this fact, we too measure j h via the j h ∝ λ M 2 / 3 h 
relation, which is fully specified by equation ( 3 ) and the following 
equations: 
j h = √ 

2 λ R vir V vir , (4) 
R vir = ( 2 

& c GM h 
H 2 0 

)1 / 3 
, (5) 

V vir = (GM h 
R vir 

)1 / 2 
. (6) 

Here λ is the halo spin parameter redefined by Bullock et al. 
( 2001 ) that we have discussed abo v e, R vir and V vir are the halo 
virial radius and velocity (see, e.g. Cimatti et al. 2020 ), & c is the 
critical o v erdensity for virialization, H 0 is the Hubble constant, 
and G is the gravitational constant. More specifically, we set H 0 = 
67 . 4 km s −1 Mpc −1 (Planck Collaboration VI 2020 ) and & c = 200 
in equation ( 5 ), λ0 = 0.035 and σ = 0.50 (0.22 dex) in equation ( 3 ), 
and make use of this equation to randomly generate one value of λ
for each galaxy of our sample. We then compute j h from equation ( 4 ). 

Our approach departs from the common practice of using the 
same value of λ for all the galaxies of the sample ( λ = λ0 ), so we 
have tested it in Appendix B . Our test demonstrates that varying 
the random realization of λ has a weak ( ! 10 per cent ) effect on the 
results, whereas suppressing the natural variance of λ artificially 

constrains the correlations between j h and other fundamental galaxy 
properties like M h and M b (see Fig. B1 ). 

In addition to the key quantities specified abo v e, we need to 
quantify the morphological type of each galaxy, and to know whether 
a galaxy is barred or non-barred. The morphological type is taken 
from Lelli et al. ( 2016 ) for SPARC galaxies and from Hunter 
et al. ( 2012 ) for LITTLE THINGS galaxies. Information about the 
presence/absence of a bar is missing from the two references abo v e. 
Therefore, we extract it from HyperLeda (Makarov et al. 2014 ), 
and classify the galaxies of our sample as ‘barred’ (43 per cent) 
or ‘non-barred’ (47 per cent) on the basis of works referenced in 
that data base, most notably: (i) the ‘Third Reference Catalogue 
of Bright Galaxies’ (RC3; de Vaucouleurs et al. 1991 ), which is 
the primary frame of reference for morphological classification of 
galaxies; and (ii) the ‘Galaxy Zoo 2’ (GZ2; Willett et al. 2013 ), which 
is a citizen science project with morphological classifications of more 
than 300 000 galaxies drawn from the Sloan Digital Sky Survey 
(SDSS). For some galaxies, no consensus has been reached, so we 
classify them as ‘uncertain’ (10 per cent). The fractions of barred 
and non-barred galaxies that characterize our sample are consistent 
with those found by G ́eron et al. ( 2021 ) using the newest version of 
Galaxy Zoo, and with their finding that there is a continuum of bar 
types, which varies from ‘weakest’ to ‘strongest’. 1 
2.3 Statistics 
To extract reliable information from our data, we use a variety of 
statistical diagnostics, particularly several robust statistics. These 
are especially useful when the data are few or contain a significant 
fraction of outliers, or even when the data deviate significantly from 
a normal distribution (see, e.g. Rousseeuw 1991 ; Press et al. 1992 , 
chap. 15.7). Two eloquent examples of robust statistics are the median 
and the median absolute deviation (MAD), which provide reliable 
estimates of the ‘central value’ and the ‘width’ of a data set even 
when almost 50 per cent of the data are outliers, contrary to the mean 
and the standard deviation. Another example of robust statistical 
methods is fitting a line to a set of data points by minimizing their 
average absolute deviation from the line, a problem that is solved by 
computing the median of the deviations (see pp. 698–700 of Press 
et al. 1992 ). If the data contain outliers, which is almost al w ays the 
case, then such ‘robust median-based’ fitting provides more reliable 
results than linear least-squares fitting (see figs 3–7 of Rousseeuw 
1991 , and fig. 15.7.1 of Press et al. 1992 ). Robust statistics are used 
not only in the statistical description and modelling of scientific 
data (see, e.g. Feigelson & Babu 2012 ), but also in data processing, 
where they are an integral part of widespread techniques like Kalman 
filtering, median filtering, and wavelet-based denoising (see, e.g. 
Romeo 2021 ). 

In this paper, we model the data using robust median-based 
fits (subroutine MEDFIT.F from Press et al. 1992 ), and measure 
the dispersion of the data points around the model using a robust 
estimator of the 1 σ scatter: 
SD rob = 1 

0 . 6745 × MAD , (7) 

1 It is worth mentioning that all current methods of bar detection are subject to 
se veral observ ational ef fects dif ficult to quantify (bandpass, spatial resolution, 
imaging depth, etc.), and that there is an ongoing effort to e v aluate and 
minimize such effects (e.g. Willett et al. 2013 ; Consolandi 2016 ; Abraham 
et al. 2018 ; G ́eron et al. 2021 ). 
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radius, and by including the contribution of helium to the atomic 
gas mass through a correction factor (1.33). j H I was also measured 
via radial integration, imposing a convergence criterion on the 
cumulative j H I ( < R ) profile. By construction, j H I (like j ! ) includes 
the contribution of bars and other non-axisymmetric structures only 
in an azimuthally averaged sense, consistent with the assumptions 
behind the analysis carried out in this paper. 

Note that all such measurements are based on high-quality ro- 
tation curves that were derived from the same type of data (H I 
interferometric observations) using consistent techniques (tilted ring 
models). Therefore, we do not e xpect an y significant bias. Using such 
measurements, we compute the baryonic mass, M b , and the baryonic 
specific angular momentum, j b ≡ J b / M b , as 
M b = M ! + M H I , (1) 
j b = j ! M ! + j H I M H I 

M ! + M H I . (2) 
We neglect the contribution of molecular gas because it is relatively 
small (e.g. Mancera Pi ̃ na et al. 2021b ), and because CO data are not 
available for most galaxies of our sample (e.g. Hunter et al. 2012 ; 
Lelli et al. 2016 ). 

Another quantity that is of key importance for our analysis is the 
halo specific angular momentum, j h ≡ J h / M h . Since this is not a 
truly observable galaxy property, it is common practice to ‘measure’ 
j h via the relation j h ∝ λ M 2 / 3 h , where λ is the halo spin parameter 
(e.g. Romanowsk y & F all 2012 ; Obreschkow & Glazebrook 2014 ; 
Lapi et al. 2018 ; Okamura, Shimasaku & Kawamata 2018 ). This is 
moti v ated by the fact that, in contrast to j h itself, λ has been tightly 
constrained by # CDM simulations. In fact, λ is well characterized 
by a lognormal probability distribution, 
p( λ) d λ = 1 √ 

2 πσ
exp [− ( ln λ − ln λ0 ) 2 

2 σ 2 
]

d λ
λ

, (3) 
whose median λ0 ≈ 0.035 and width σ ≈ 0.50 (0.22 dex) do 
not depend significantly on halo mass, redshift, environment, or 
cosmology (e.g. Bullock et al. 2001 ; Macci ̀o, Dutton & van den 
Bosch 2007 , 2008 ; Rodr ́ıguez-Puebla et al. 2016 ; Zjupa & Springel 
2017 ). In view of this fact, we too measure j h via the j h ∝ λ M 2 / 3 h 
relation, which is fully specified by equation ( 3 ) and the following 
equations: 
j h = √ 

2 λ R vir V vir , (4) 
R vir = ( 2 

& c GM h 
H 2 0 

)1 / 3 
, (5) 

V vir = (GM h 
R vir 

)1 / 2 
. (6) 

Here λ is the halo spin parameter redefined by Bullock et al. 
( 2001 ) that we have discussed abo v e, R vir and V vir are the halo 
virial radius and velocity (see, e.g. Cimatti et al. 2020 ), & c is the 
critical o v erdensity for virialization, H 0 is the Hubble constant, 
and G is the gravitational constant. More specifically, we set H 0 = 
67 . 4 km s −1 Mpc −1 (Planck Collaboration VI 2020 ) and & c = 200 
in equation ( 5 ), λ0 = 0.035 and σ = 0.50 (0.22 dex) in equation ( 3 ), 
and make use of this equation to randomly generate one value of λ
for each galaxy of our sample. We then compute j h from equation ( 4 ). 

Our approach departs from the common practice of using the 
same value of λ for all the galaxies of the sample ( λ = λ0 ), so we 
have tested it in Appendix B . Our test demonstrates that varying 
the random realization of λ has a weak ( ! 10 per cent ) effect on the 
results, whereas suppressing the natural variance of λ artificially 

constrains the correlations between j h and other fundamental galaxy 
properties like M h and M b (see Fig. B1 ). 

In addition to the key quantities specified abo v e, we need to 
quantify the morphological type of each galaxy, and to know whether 
a galaxy is barred or non-barred. The morphological type is taken 
from Lelli et al. ( 2016 ) for SPARC galaxies and from Hunter 
et al. ( 2012 ) for LITTLE THINGS galaxies. Information about the 
presence/absence of a bar is missing from the two references abo v e. 
Therefore, we extract it from HyperLeda (Makarov et al. 2014 ), 
and classify the galaxies of our sample as ‘barred’ (43 per cent) 
or ‘non-barred’ (47 per cent) on the basis of works referenced in 
that data base, most notably: (i) the ‘Third Reference Catalogue 
of Bright Galaxies’ (RC3; de Vaucouleurs et al. 1991 ), which is 
the primary frame of reference for morphological classification of 
galaxies; and (ii) the ‘Galaxy Zoo 2’ (GZ2; Willett et al. 2013 ), which 
is a citizen science project with morphological classifications of more 
than 300 000 galaxies drawn from the Sloan Digital Sky Survey 
(SDSS). For some galaxies, no consensus has been reached, so we 
classify them as ‘uncertain’ (10 per cent). The fractions of barred 
and non-barred galaxies that characterize our sample are consistent 
with those found by G ́eron et al. ( 2021 ) using the newest version of 
Galaxy Zoo, and with their finding that there is a continuum of bar 
types, which varies from ‘weakest’ to ‘strongest’. 1 
2.3 Statistics 
To extract reliable information from our data, we use a variety of 
statistical diagnostics, particularly several robust statistics. These 
are especially useful when the data are few or contain a significant 
fraction of outliers, or even when the data deviate significantly from 
a normal distribution (see, e.g. Rousseeuw 1991 ; Press et al. 1992 , 
chap. 15.7). Two eloquent examples of robust statistics are the median 
and the median absolute deviation (MAD), which provide reliable 
estimates of the ‘central value’ and the ‘width’ of a data set even 
when almost 50 per cent of the data are outliers, contrary to the mean 
and the standard deviation. Another example of robust statistical 
methods is fitting a line to a set of data points by minimizing their 
average absolute deviation from the line, a problem that is solved by 
computing the median of the deviations (see pp. 698–700 of Press 
et al. 1992 ). If the data contain outliers, which is almost al w ays the 
case, then such ‘robust median-based’ fitting provides more reliable 
results than linear least-squares fitting (see figs 3–7 of Rousseeuw 
1991 , and fig. 15.7.1 of Press et al. 1992 ). Robust statistics are used 
not only in the statistical description and modelling of scientific 
data (see, e.g. Feigelson & Babu 2012 ), but also in data processing, 
where they are an integral part of widespread techniques like Kalman 
filtering, median filtering, and wavelet-based denoising (see, e.g. 
Romeo 2021 ). 

In this paper, we model the data using robust median-based 
fits (subroutine MEDFIT.F from Press et al. 1992 ), and measure 
the dispersion of the data points around the model using a robust 
estimator of the 1 σ scatter: 
SD rob = 1 

0 . 6745 × MAD , (7) 

1 It is worth mentioning that all current methods of bar detection are subject to 
se veral observ ational ef fects dif ficult to quantify (bandpass, spatial resolution, 
imaging depth, etc.), and that there is an ongoing effort to e v aluate and 
minimize such effects (e.g. Willett et al. 2013 ; Consolandi 2016 ; Abraham 
et al. 2018 ; G ́eron et al. 2021 ). 
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Figure 1. Top panels: basic scaling relations between the stellar ( j ! ), baryonic ( j b ), and halo ( j h ) specific angular momenta ( j ≡ J / M ) of disc galaxies. Bottom 
panels: the strongest and most significant correlations between the retained fractions of specific angular momentum ( j ! / j h , j b / j h ) and other galaxy properties. 
Weaker and less significant correlations are shown in Figs A2 and A3 . The galaxy sample and the data are described in Section 2 . Galaxies are colour-coded 
by Hubble stage, and symbol-coded by their parent samples: SPARC (solid circles with black ouline) and LITTLE THINGS (asterisks). The thick solid lines 
are robust median-based fits to the data points, while the thin solid lines are least-squares fits (see Section 2.3 for more information). The dashed lines indicate 
conservation of specific angular momentum, i.e. that stars/baryons have retained the same amount of specific angular momentum as the host dark matter halo. 
Statistical information about the data is given in summary form and simplified notation (see Section 2.3 for more information). 
detailed comparative analysis that stretches across a variety of galaxy 
properties. In fact, j b / j h and j ! / j h do not show any particularly 
significant ( p ! 10 −4 ) correlation with basic properties like j h , M h 
or their baryonic/stellar counterparts (see Figs A2 and A3 ). Note 
also that the baryonic and stellar scaling relations pointed out abo v e 
(item ii) are basically consistent with ‘inside-out’ or ‘biased-collapse’ 
models of galaxy formation (e.g. Dutton & van den Bosch 2012 ; 
Romanowsk y & F all 2012 ). In other words, those models assume that 
there is a power-law relation between retained fraction of specific 
angular momentum and mass fraction, but they do not predict the 
actual slopes of the baryonic and stellar relations, which most likely 

result from the galaxy evolution processes involved in the gas-star 
cycle. 
3.2 Atomic gas versus stars 
To further understand how well specific angular momentum is 
conserved in the process of galaxy formation and evolution, let us 
finally turn our attention to atomic gas and analyse j H I / j h . 

Fig. 2 shows j H I / j h versus M H I / M h face to face with its stellar 
counterpart. The main results of our comparative analysis are pointed 
out below. 
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The baryonic-to-halo j ratio

 ● jb/jh is thus a quantity of great theoretical 
importance!

 ➤ jb/jh measures the fraction of j retained by 
baryons, i.e. how well j is conserved in the 
process of galaxy formation and evolution (see, 
e.g., Cimatti et al. 2020).
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A PP E N D IX  A :  A D D I T I O NA L  F I G U R E S  
This appendix contains four additional figures. 

Fig. A1 , mentioned in Sections 3.1 and 3.2 , provides detailed sta- 
tistical information concerning log j b /j h , log j ! /j h , and log j H I /j h . 

The most important point illustrated by this figure is that the proba- 
bility distributions of such fractions have a strong central tendency. 
This is especially true for baryons and stars, whose distributions 
are clearly unimodal and more peaked than a Gaussian. In such 
cases, the median is a robust estimator of the central value of the 
distribution (see chap. 14.1 of Press et al. 1992 ). Thus the median 
values ± robust standard errors of j b / j h , j ! / j h , and j H I / j h provide 
fully meaningful estimates of how well specific angular momentum 
is conserved in a statistical sense, regardless of how strongly or 
significantly the retained fractions of j correlate with other galaxy 
properties. 

Figs A2 –A4 , also mentioned in Sections 3.1 and 3.2 , supple- 
ment the information provided by Figs 1 and 2 with additional 
correlation plots. Figs A2 and A3 show that j b / j h and j ! / j h do 
not hav e an y particularly significant ( p ! 10 −4 ) correlation with 
basic galaxy properties like j h , M h or their baryonic/stellar coun- 
terparts. Fig. A4 shows that j H I / j h does not correlate with j h or 
M h , while it has a moderately high degree of correlation with j H I 
and M H I . 

Figure A1. Detailed statistical information concerning log j b /j h , log j ! /j h , and log j H I /j h , the logarithmic fractions of specific angular momentum retained by 
baryons, stars, and atomic gas. The galaxy sample and the data are described in Section 2 . Each panel shows the observed probability distribution (histogram) 
together with several robust statistics: the median, Med (solid line), the robust standard error, SE rob (narrow stripe), the robust standard deviation, SD rob (wide 
stripe), as well as a Gaussian probability distribution with parameters µ = Med and σ = SD rob normalized as the histogram (dashed curve). Also reported 
are the values of several classical statistics: the mean ( m ), standard deviation (SD), skewness ( S ), and kurtosis ( K ). Positiv e/ne gativ e values of S mean that 
the probability distribution has a longer tail on the right/left. Positiv e/ne gativ e values of K mean that the probability distribution has fatter/thinner tails than a 
Gaussian distribution, which often implies that the distribution is more peaked/flat than a Gaussian. 
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Figure 1. Top panels: basic scaling relations between the stellar ( j ! ), baryonic ( j b ), and halo ( j h ) specific angular momenta ( j ≡ J / M ) of disc galaxies. Bottom 
panels: the strongest and most significant correlations between the retained fractions of specific angular momentum ( j ! / j h , j b / j h ) and other galaxy properties. 
Weaker and less significant correlations are shown in Figs A2 and A3 . The galaxy sample and the data are described in Section 2 . Galaxies are colour-coded 
by Hubble stage, and symbol-coded by their parent samples: SPARC (solid circles with black ouline) and LITTLE THINGS (asterisks). The thick solid lines 
are robust median-based fits to the data points, while the thin solid lines are least-squares fits (see Section 2.3 for more information). The dashed lines indicate 
conservation of specific angular momentum, i.e. that stars/baryons have retained the same amount of specific angular momentum as the host dark matter halo. 
Statistical information about the data is given in summary form and simplified notation (see Section 2.3 for more information). 
detailed comparative analysis that stretches across a variety of galaxy 
properties. In fact, j b / j h and j ! / j h do not show any particularly 
significant ( p ! 10 −4 ) correlation with basic properties like j h , M h 
or their baryonic/stellar counterparts (see Figs A2 and A3 ). Note 
also that the baryonic and stellar scaling relations pointed out abo v e 
(item ii) are basically consistent with ‘inside-out’ or ‘biased-collapse’ 
models of galaxy formation (e.g. Dutton & van den Bosch 2012 ; 
Romanowsk y & F all 2012 ). In other words, those models assume that 
there is a power-law relation between retained fraction of specific 
angular momentum and mass fraction, but they do not predict the 
actual slopes of the baryonic and stellar relations, which most likely 

result from the galaxy evolution processes involved in the gas-star 
cycle. 
3.2 Atomic gas versus stars 
To further understand how well specific angular momentum is 
conserved in the process of galaxy formation and evolution, let us 
finally turn our attention to atomic gas and analyse j H I / j h . 

Fig. 2 shows j H I / j h versus M H I / M h face to face with its stellar 
counterpart. The main results of our comparative analysis are pointed 
out below. 
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Figure 2. The relation between retained fraction of specific angular momentum and mass fraction: atomic gas versus stars. The galaxy sample and the data are 
described in Section 2 . Galaxies are colour-coded by Hubble stage, and symbol-coded by their parent samples: SPARC (solid circles with black ouline) and 
LITTLE THINGS (asterisks). The thick solid lines are robust median-based fits to the data points, while the thin solid lines are least-squares fits (see Section 2.3 
for more information). The dashed lines indicate conservation of specific angular momentum, i.e. that atomic-gas/stars have retained the same amount of specific 
angular momentum as the host dark matter halo. Statistical information about the data is given in summary form and simplified notation (see Section 2.3 for 
more information). 

(i) Basic constraints. The most striking result is that atomic gas 
has actually gained more specific angular momentum than the host 
dark matter halo. The median of j H I / j h (1.23 ± 0.14) is in fact 
well abo v e unity, and indeed twice as large as the median of j ! / j h . 
Such estimates are meaningful because the probability distribution of 
log j H I /j h has a strong central tendency, although not as strong as the 
one shown by stars (see Fig. A1 for detailed statistical information). 

(ii) Systematic trends. Concerning the relation between ‘re- 
tained’ fraction of specific angular momentum and mass fraction, 
atomic gas shows a steeper scaling than stars, j H I / j h ∝ ( M H I / M h ) 0.5 , 
and a slightly higher degree of correlation (e.g. ρ ≈ 0.4 and p ρ
∼ 10 −5 ). Note also that the two relations show opposite residual 
trends with galaxy morphology. For instance, early-type galaxies 
tend to cluster abo v e (below) the best-fitting relation found for atomic 
gas (stars), hence they tend to have higher j H I / j h (lower j ! / j h ) than 
predicted. This tendency is reversed for late-type galaxies. It is most 
likely because of such opposite residual trends that baryons show 
a higher degree of correlation than stars and atomic gas. In fact, j b 
is the mass-weighted average of j ! and j H I (see equation 2 ), which 
tends to cancel out opposite trends. 

Our result (i) is consistent with two results from cosmological 
simulations of galaxy formation, namely that accreting gas has higher 
specific angular momentum than the dark matter halo (Kimm et al. 
2011 ; Stewart et al. 2013 ), and that gas in galaxy discs tends to have 
higher specific angular momentum than stars (Teklu et al. 2015 ; 
Agertz & Kravtsov 2016 ; El-Badry et al. 2018 ). Our finding that 
( j H I /j h ) ≈ 2 ( j ! /j h ) is also consistent with a result previously found 
by Mancera Pi ̃ na et al. ( 2021b ), namely that j H I / j ! ≈ 2. Those authors 
showed that j H I / j ! is in fact independent of M b , and that its value 
regulates the slopes of the relations between j , M , and gas fraction. 

As regards the relations between retained fraction of specific 
angular momentum and basic galaxy properties, atomic gas and stars 
show similarities as well as significant differences (cf. Figs A3 and 

A4 ). On the one hand, j H I / j h does not correlate with j h or M h , like 
j ! / j h . On the other hand, j H I / j h has a moderately high degree of 
correlation with j H I and M H I , while j ! / j h is uncorrelated with j ! or 
M ! . 
3.3 What physical mechanisms are behind the obser v ed 
correlations? 
One of the most innov ati ve results of our analysis is the finding 
that galaxies with larger baryon fractions have also retained larger 
fractions of their specific angular momentum (see Sects 3.1 and 3.2 ). 
In this section, we discuss what physical mechanisms are behind the 
observed correlations (bottom panels of Fig. 1 , and Fig. 2 ). 

Indeed, such correlations impose important constraints on the 
physics go v erning the galactic outflow-accretion c ycle across galaxy 
masses. Dutton & van den Bosch ( 2012 ) argued that the empirical 
scaling relations between j b / j h , M b / M h , and M h require three ingre- 
dients: (i) galactic outflo ws, dri ven by stellar and/or AGN feedback; 
(ii) angular momentum transfer from accreting gas to the dark matter 
halo, driven by dynamical friction; and, most importantly, (iii) that the 
efficiency of angular momentum loss decreases with increasing halo 
mass. State-of-the-art cosmological simulations of galaxy formation 
are providing valuable insights into the angular momentum of 
accreting gas. Hafen et al. ( 2022 ) show that the circumgalactic 
medium (CGM) inside massive haloes ( M h ∼ 10 12 M %) tends to be 
virialized, as the cooling time is longer than the dynamical time. 
This causes gas to accrete via hot rotating flows, which feed the 
outer regions of disc galaxies by transferring angular momentum 
that is often aligned with the angular momentum of the disc (see 
also Trapp et al. 2022 ). Hafen et al. ( 2022 ) also show that the 
CGM inside lower-mass haloes ( M h ∼ 10 11 M %) is less, or not at all, 
virialized. This causes the angular momentum of accreting gas to be 
often misaligned with that of the disc. Since accreting gas transfers 
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BARRED versus NON-BARRED galaxies

 ● The core of the problem:
Are barred galaxies characterized by values of j 
that are systematically different from those of 
non-barred galaxies?

 ➤ Observational test of the Efstathiou, Lake & 
Negroponte (1982) bar instability criterion

 ➤ Self-regulation of galaxy discs driven by 
local gravitational instabilities
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angular momentum to both the disc and the dark matter halo, the 
two findings abo v e suggest that the efficiency with which angular 
momentum is transferred to the halo decreases with increasing halo 
mass, and so does the efficiency of angular momentum loss. The 
two findings abo v e are therefore in qualitativ e agreement with the 
theoretical arguments of Dutton & van den Bosch ( 2012 ), as well as 
with our observed correlations. 
4  BARRED  V ERSU S  N O N - BA R R E D  G A L A X I E S  
In this section, we explore the connection between the specific angu- 
lar momentum of disc galaxies, bar structure, and disc gravitational 
instability. The core of the problem is whether barred galaxies are 
characterized by values of j that are systematically different from 
those of non-barred galaxies, as predicted for instance by popular 
bar instability criteria. Below we discuss this issue not only in the 
context of bar instability (Sects 4.1.1 –4.1.3 ), but also in the context 
of another important galaxy evolution process: the self-regulation of 
galaxy discs driven by local gravitational instabilities (Sects 4.2.1 –
4.2.2 ). 
4.1 Obser v ational test of the Efstathiou, Lake & Negroponte 
( 1982 ) bar instability criterion 
4.1.1 Overview 
A decade after the pioneering work of Ostriker & Peebles ( 1973 ), 
Efstathiou et al. ( 1982 ) formulated a simple bar instability criterion 
in terms of observable galaxy properties (hereafter ELN criterion): 
E ≡ V max 

( GM d /R d ) 1 / 2 ! 1 , (9) 
where V max is the maximum rotation velocity, M d is the mass of 
the disc, and R d is the exponential disc scale length. The instability 
threshold is " 1.1 for stellar discs (Efstathiou et al. 1982 ) and " 
0.9 for gas discs (Christodoulou et al. 1995 ), but it is common 
to approximate these thresholds more simply as ≈1. Mo et al. 
( 1998 ) and van den Bosch ( 1998 ) did so, and used a detailed disc 
formation model to reformulate the ELN criterion in terms of more 
fundamental galaxy properties: the disc mass fraction, M d / M h , and 
the disc spin parameter, λ ( j d /j h ), i.e. the halo spin parameter ( λ) 
times the fraction of specific angular momentum retained by the 
disc ( j d / j h ). The resulting bar instability condition is more elaborate 
than equation ( 9 ), but Mo et al. ( 1998 ) showed that such a condition 
depends weakly on the disc-halo model and is well approximated by 
a simple formula: 
E 2 ≈ λ

( j d /j h ) 
( M d /M h ) ! 1 , (10) 

here expressed in explicit form using our notation. 2 Such a criterion 
predicts that a disc galaxy is bar unstable if and only if the disc spin 
parameter is lower than the disc mass fraction. This means that if one 
disregards the galaxy evolution processes that follow the formation 
of a bar, as is commonly done when comparing the predictions of 
bar instability criteria with observations, then barred galaxies should 
all be gravitationally unstable and characterized by values of j d / j h 
2 Deriving equation ( 10 ) from equation ( 9 ) is a complex procedure, which 
involv es sev eral steps of the disc-halo modelling, and sev eral approximations 
of the model parameters. The interested reader is referred to sections 2.2, 2.3, 
and 3.2 of Mo et al. ( 1998 ) for detailed information. 

that are systematically lower than those of non-barred galaxies (for 
a given λ and a given M d / M h ). 

Athanassoula ( 2008 ) pointed out two major limitations of the ELN 
criterion, and illustrated them with eloquent simulation tests. First 
of all, the ELN criterion is based on 2D simulations so it does not 
take into account the interaction between disc and halo, which has 
a strong destabilizing impact. Secondly, the ELN criterion does not 
properly take into account the disc velocity dispersion or the central 
concentration of the halo, either of which has a stabilizing effect. 
Indeed, the disc velocity dispersion, σ , is one of the quantities 
that most radically affect the onset of gravitational instabilities in 
galaxy discs, and the quantity that was most drastically modelled 
in early (2D) simulations. This concerns not only σ z , which gives 
vertical structure to the disc and plays an important stabilizing 
role (Vandervoort 1970 ; Romeo 1992 , 1994 ), but also σ R , whose 
stabilizing role can be critically impacted by low-force resolution 
(Romeo 1994 , 1997 , 1998a , b ). Note also that σ z / σ R is an important 
parameter for the evolution of a bar: values of σz /σR ! 0 . 3 cause 
the bending instability (buckling of the bar), which also causes the 
formation of boxy/peanut structures (see Rodionov & Sotnikova 
2013 for a recent o v erview and detailed analysis). All that is not 
(properly) taken into account by the ELN criterion. 

Athanassoula ( 2008 ) also mentioned another limitation of the ELN 
criterion, namely that it does not take into account the multicompo- 
nent nature of galaxy discs. In other words, the fact that equations ( 9 ) 
and ( 10 ) are valid for discs made of either stars or gas does not mean 
that they can be applied to discs made of both stars and gas, as is 
commonly done. 3 In fact, zoom-in cosmological simulations show 
that high-gas fractions tend to dissolve bars (Kraljic, Bournaud & 
Martig 2012 ). 

Sell w ood ( 2016 ) carried out further simulation tests that illus- 
trated, once again, the importance of disc-halo interaction for bar 
instability, thus the inadequacy of the ELN criterion (see also 
Berrier & Sell w ood 2016 ). 

In spite of such criticisms, the ELN criterion is used by all current 
semi-analytic models of galaxy formation and evolution to ‘create’ 
bulges in disc galaxies that are predicted to be bar unstable (see sect. 
1 of Devergne et al. 2020 for an o v erview). Indeed, the popularity 
of the ELN criterion originates not only from its simplicity, but also 
from the belief that its inaccuracy is ‘likely to be’ negligible in 
comparison with other uncertainties of the modelling, for example 
the mass of the bulge formed by bar instability (see again sect. 1 of 
Devergne et al. 2020 ). 
4.1.2 How accurate is the ELN criterion from a statistical point of 
view? 
This is a crucial question that naturally arises from the discussion 
abo v e. To answer this question, we test the ELN criterion observa- 
tionally making use of equation ( 10 ). To the best of our knowledge, 
this is the first observational test performed on the ELN criterion; 
and it is statistically unbiased, given that the fractions of barred 
and non-barred galaxies that characterize our sample are consistent 
with those found by G ́eron et al. ( 2021 ) using the newest version of 
Galaxy Zoo (see Section 2.2 for more information). We make use of 
equation ( 10 ), rather than equation ( 9 ), because it naturally connects 
3 This is one of the lessons learned in the context of local disc gravitational 
instabilities. Look for instance at fig. 5 of Romeo & Wiegert ( 2011 ), and see 
how dramatically the gas Q parameter misrepresents the actual stability level 
of nearby star-forming spirals. 
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angular momentum to both the disc and the dark matter halo, the 
two findings abo v e suggest that the efficiency with which angular 
momentum is transferred to the halo decreases with increasing halo 
mass, and so does the efficiency of angular momentum loss. The 
two findings abo v e are therefore in qualitativ e agreement with the 
theoretical arguments of Dutton & van den Bosch ( 2012 ), as well as 
with our observed correlations. 
4  BARRED  VER SU S  N O N - BA R R E D  G A L A X I E S  
In this section, we explore the connection between the specific angu- 
lar momentum of disc galaxies, bar structure, and disc gravitational 
instability. The core of the problem is whether barred galaxies are 
characterized by values of j that are systematically different from 
those of non-barred galaxies, as predicted for instance by popular 
bar instability criteria. Below we discuss this issue not only in the 
context of bar instability (Sects 4.1.1 –4.1.3 ), but also in the context 
of another important galaxy evolution process: the self-regulation of 
galaxy discs driven by local gravitational instabilities (Sects 4.2.1 –
4.2.2 ). 
4.1 Obser v ational test of the Efstathiou, Lake & Negroponte 
( 1982 ) bar instability criterion 
4.1.1 Overview 
A decade after the pioneering work of Ostriker & Peebles ( 1973 ), 
Efstathiou et al. ( 1982 ) formulated a simple bar instability criterion 
in terms of observable galaxy properties (hereafter ELN criterion): 
E ≡ V max 

( GM d /R d ) 1 / 2 ! 1 , (9) 
where V max is the maximum rotation velocity, M d is the mass of 
the disc, and R d is the exponential disc scale length. The instability 
threshold is " 1.1 for stellar discs (Efstathiou et al. 1982 ) and " 
0.9 for gas discs (Christodoulou et al. 1995 ), but it is common 
to approximate these thresholds more simply as ≈1. Mo et al. 
( 1998 ) and van den Bosch ( 1998 ) did so, and used a detailed disc 
formation model to reformulate the ELN criterion in terms of more 
fundamental galaxy properties: the disc mass fraction, M d / M h , and 
the disc spin parameter, λ ( j d /j h ), i.e. the halo spin parameter ( λ) 
times the fraction of specific angular momentum retained by the 
disc ( j d / j h ). The resulting bar instability condition is more elaborate 
than equation ( 9 ), but Mo et al. ( 1998 ) showed that such a condition 
depends weakly on the disc-halo model and is well approximated by 
a simple formula: 
E 2 ≈ λ

( j d /j h ) 
( M d /M h ) ! 1 , (10) 

here expressed in explicit form using our notation. 2 Such a criterion 
predicts that a disc galaxy is bar unstable if and only if the disc spin 
parameter is lower than the disc mass fraction. This means that if one 
disregards the galaxy evolution processes that follow the formation 
of a bar, as is commonly done when comparing the predictions of 
bar instability criteria with observations, then barred galaxies should 
all be gravitationally unstable and characterized by values of j d / j h 
2 Deriving equation ( 10 ) from equation ( 9 ) is a complex procedure, which 
involv es sev eral steps of the disc-halo modelling, and sev eral approximations 
of the model parameters. The interested reader is referred to sections 2.2, 2.3, 
and 3.2 of Mo et al. ( 1998 ) for detailed information. 

that are systematically lower than those of non-barred galaxies (for 
a given λ and a given M d / M h ). 

Athanassoula ( 2008 ) pointed out two major limitations of the ELN 
criterion, and illustrated them with eloquent simulation tests. First 
of all, the ELN criterion is based on 2D simulations so it does not 
take into account the interaction between disc and halo, which has 
a strong destabilizing impact. Secondly, the ELN criterion does not 
properly take into account the disc velocity dispersion or the central 
concentration of the halo, either of which has a stabilizing effect. 
Indeed, the disc velocity dispersion, σ , is one of the quantities 
that most radically affect the onset of gravitational instabilities in 
galaxy discs, and the quantity that was most drastically modelled 
in early (2D) simulations. This concerns not only σ z , which gives 
vertical structure to the disc and plays an important stabilizing 
role (Vandervoort 1970 ; Romeo 1992 , 1994 ), but also σ R , whose 
stabilizing role can be critically impacted by low-force resolution 
(Romeo 1994 , 1997 , 1998a , b ). Note also that σ z / σ R is an important 
parameter for the evolution of a bar: values of σz /σR ! 0 . 3 cause 
the bending instability (buckling of the bar), which also causes the 
formation of boxy/peanut structures (see Rodionov & Sotnikova 
2013 for a recent o v erview and detailed analysis). All that is not 
(properly) taken into account by the ELN criterion. 

Athanassoula ( 2008 ) also mentioned another limitation of the ELN 
criterion, namely that it does not take into account the multicompo- 
nent nature of galaxy discs. In other words, the fact that equations ( 9 ) 
and ( 10 ) are valid for discs made of either stars or gas does not mean 
that they can be applied to discs made of both stars and gas, as is 
commonly done. 3 In fact, zoom-in cosmological simulations show 
that high-gas fractions tend to dissolve bars (Kraljic, Bournaud & 
Martig 2012 ). 

Sell w ood ( 2016 ) carried out further simulation tests that illus- 
trated, once again, the importance of disc-halo interaction for bar 
instability, thus the inadequacy of the ELN criterion (see also 
Berrier & Sell w ood 2016 ). 

In spite of such criticisms, the ELN criterion is used by all current 
semi-analytic models of galaxy formation and evolution to ‘create’ 
bulges in disc galaxies that are predicted to be bar unstable (see sect. 
1 of Devergne et al. 2020 for an o v erview). Indeed, the popularity 
of the ELN criterion originates not only from its simplicity, but also 
from the belief that its inaccuracy is ‘likely to be’ negligible in 
comparison with other uncertainties of the modelling, for example 
the mass of the bulge formed by bar instability (see again sect. 1 of 
Devergne et al. 2020 ). 
4.1.2 How accurate is the ELN criterion from a statistical point of 
view? 
This is a crucial question that naturally arises from the discussion 
abo v e. To answer this question, we test the ELN criterion observa- 
tionally making use of equation ( 10 ). To the best of our knowledge, 
this is the first observational test performed on the ELN criterion; 
and it is statistically unbiased, given that the fractions of barred 
and non-barred galaxies that characterize our sample are consistent 
with those found by G ́eron et al. ( 2021 ) using the newest version of 
Galaxy Zoo (see Section 2.2 for more information). We make use of 
equation ( 10 ), rather than equation ( 9 ), because it naturally connects 
3 This is one of the lessons learned in the context of local disc gravitational 
instabilities. Look for instance at fig. 5 of Romeo & Wiegert ( 2011 ), and see 
how dramatically the gas Q parameter misrepresents the actual stability level 
of nearby star-forming spirals. 
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Observational test of the ELN criterion

 ● Motivations behind such a test:

 ➤ The ELN criterion is used by all current semi-
analytic models of galaxy formation and 
evolution to ‘create’ bulges in disc galaxies that 
are predicted to be bar unstable.

 ➤ This is the first observational test performed 
on the ELN criterion; and it is statistically 
unbiased.
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Figure B2. Additional test of the ELN criterion: the original criterion (Efstathiou et al. 1982 ) [equation (9)] versus the reformulation made by Mo et al. ( 1998 ) 
[equation (10)]. See Appendix B for more information. 

Figure B3. Additional test of the ELN criterion: atomic gas versus stars. See Appendix B for more information. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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Figure 3. Observational test of the Efstathiou, Lake & Negroponte ( 1982 ) bar instability criterion (hereafter ELN criterion), as reformulated by Mo et al. 
( 1998 ). Such a criterion predicts that a disc galaxy is bar unstable if and only if λ ( j d /j h ) / ( M d /M h ) ! 1, and is used by all current semi-analytic models of 
galaxy formation and evolution to ‘create’ bulges in disc galaxies that are predicted to be bar unstable (see sect. 1 of Devergne et al. 2020 for an o v erview). 
The galaxy sample and the data are described in Section 2 . The left-hand and right-hand panels illustrate our test for two popular implementations of the ELN 
criterion: one focusing on the stellar disc, and the other including the whole baryonic disc. In each case, the ELN parameter is shown as a function of mass (top) 
and gas mass fraction (bottom). If the ELN criterion was reliable, then the light-orange/azure region would be almost entirely populated by the orange/azure 
data points. Clearly, this is not the case in any of the panels. Furthermore, there are clear systematic trends with stellar/baryonic mass and gas mass fraction (see 
Section 4.1.2 for more information). 
with the analysis carried out in Section 3 . To perform such a test, we 
disregard the galaxy evolution processes that follow the formation 
of a bar, as is commonly done when comparing the predictions of 
bar instability criteria with observations (e.g. Efstathiou et al. 1982 ; 

Mo et al. 1998 ; van den Bosch 1998 ; Okamura et al. 2018 ; Kataria, 
Das & Barway 2020 ). 

Fig. 3 illustrates our test for two popular implementations of the 
ELN criterion: one focusing on the stellar disc (left-hand panels), 
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Figure 3. Observational test of the Efstathiou, Lake & Negroponte ( 1982 ) bar instability criterion (hereafter ELN criterion), as reformulated by Mo et al. 
( 1998 ). Such a criterion predicts that a disc galaxy is bar unstable if and only if λ ( j d /j h ) / ( M d /M h ) ! 1, and is used by all current semi-analytic models of 
galaxy formation and evolution to ‘create’ bulges in disc galaxies that are predicted to be bar unstable (see sect. 1 of Devergne et al. 2020 for an o v erview). 
The galaxy sample and the data are described in Section 2 . The left-hand and right-hand panels illustrate our test for two popular implementations of the ELN 
criterion: one focusing on the stellar disc, and the other including the whole baryonic disc. In each case, the ELN parameter is shown as a function of mass (top) 
and gas mass fraction (bottom). If the ELN criterion was reliable, then the light-orange/azure region would be almost entirely populated by the orange/azure 
data points. Clearly, this is not the case in any of the panels. Furthermore, there are clear systematic trends with stellar/baryonic mass and gas mass fraction (see 
Section 4.1.2 for more information). 
with the analysis carried out in Section 3 . To perform such a test, we 
disregard the galaxy evolution processes that follow the formation 
of a bar, as is commonly done when comparing the predictions of 
bar instability criteria with observations (e.g. Efstathiou et al. 1982 ; 

Mo et al. 1998 ; van den Bosch 1998 ; Okamura et al. 2018 ; Kataria, 
Das & Barway 2020 ). 

Fig. 3 illustrates our test for two popular implementations of the 
ELN criterion: one focusing on the stellar disc (left-hand panels), 
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Self-regulation of galaxy discs

 ● A fundamental physical process that 
constrains how gravitationally (un)stable galaxy 
discs are.
What is the constraint?

 ➤ 

Q ≈ 1?  No: theoretically motivated BUT
mostly inconsistent with observations!

Toomre’s (1964) stability criterion

Q ≡ κσ

πGΣ
≥ 1 (1)

0.5 ≤ σz/σR ≤ 1 (2)

0 ≤ σz/σR ≤ 1 (3)
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Toomre (1964) 



A new set of tight scaling relations 4845

Figure 1. Radial profiles of the Toomre parameter for L08’s sample of spirals, with the galactocentric distance measured in units of the optical radius (B-band
isophotal radius at 25 mag arcsec−2). Also shown is the local median of Q. In the case of molecular gas, the radial range is limited by the sparsity of sensitive
CO measurements beyond half the optical radius.

lar momentum, ji = Ji/Mi, via a simple and accurate approximation
(Romeo & Mogotsi 2018). The resulting relation is ⟨Qi⟩ ∝ Ai ,
where

Ai = jiσ i

GMi

, (2)

ji = 1
Mi

∫ ∞

0
Rvc(R) "i(R) 2πR dR, (3)

σ i = 1
Rav

∫ Rav

0
σi(R) dR. (4)

Note four points concerning equations (1)–(4).

(i) Mi and ji are the total mass and the total specific angular
momentum of atomic hydrogen + helium gas (i = H I), molecular
hydrogen + helium gas (i = H2) or stars (i = ⋆).

(ii) Our definition of ji is based on that of Obreschkow &
Glazebrook (2014), and assumes that stars and gas follow exactly
the same rotation curve. This is technically not correct and tends to
overestimate j⋆ (El-Badry et al. 2018; Fall & Romanowsky 2018;
Posti et al. 2018a) because it neglects asymmetric drift corrections,
which are significant where σ⋆ ! vc (see e.g. Binney & Tremaine
2008). However, our definition of ji is the one most commonly used
for precision measurement of angular momentum in disc galaxies
(e.g. Obreschkow & Glazebrook 2014; Butler, Obreschkow & Oh
2017; Chowdhury & Chengalur 2017; Elson 2017; Kurapati et al.
2018). More importantly, our definition of ji is fully consistent
with the epicyclic approximation, σ i/Rκ ≪ 1 (hence σ i ≪ vc), a
fundamental assumption behind Toomre’s stability criterion and its
descendants (see e.g. Bertin 2014).

(iii) While ⟨Qi⟩ is the mass-weighted average of Qi(R), σ i is
the radial average of σ i(R), where σ denotes the radial velocity
dispersion.

(iv) Ai may look identical to the q parameter defined by
Obreschkow et al. (2016), but it is not. For instance, Ai applies
not only to atomic gas but also to molecular gas and stars, and does
not assume that σ i is constant. As pointed out in Section 1, our
approach is also significantly different from the Obreschkow et al.
(2016) model, and so are the resulting scaling relations, as we will
show in Section 4.2.

Last but not least, note that the coefficient of proportionality
between ⟨Qi⟩ and Ai is a numerical factor that depends on Rav/li,
where Rav is the radius over which Qi(R) is averaged (see equation

1) and li is the exponential scale length of component i. So this
factor is not well defined for a component whose mass distribution
is far from exponential, like atomic gas (e.g. Bigiel & Blitz 2012).
In view of that, we opt for a unified approach and use Ai as a
proxy for ⟨Qi⟩: it is well defined for all the components, and it is
simpler than ⟨Qi⟩. In addition, the offset of Ai from ⟨Qi⟩ is not an
issue because Qi = 1 no longer means marginal stability when the
disc has multiple, gravitationally coupled components (Romeo &
Falstad 2013; see also Fig. 1 and its discussion), and because any
such numerical factor will be statistically suppressed by the final
rescaling made in Section 2.3. This is also the reason why we have
not corrected Qi so as to include disc thickness effects.

To compute the Ai stability parameter for L08’s sample of spirals,
we use the values of Mi and ji tabulated by L08 and Obreschkow &
Glazebrook (2014), respectively. We also need to evaluate σ i , hence
to choose the averaging radius Rav. Although one can do that
arbitrarily, we prefer to make use of all the information provided by
the σ i measurements. Therefore we choose Rav = R25 for atomic gas,
Rav = 1

2 R25 for molecular gas, and Rav = R25 for stars, where R25 is
the optical radius (B-band isophotal radius at 25 mag arcsec−2). In
the case of molecular gas, the radial range is limited by the sparsity
of sensitive CO measurements beyond half the optical radius (see
fig. 1 of Romeo & Mogotsi 2017 and its discussion). Fig. 2 shows
that the 1σ scatter of Ai ranges from 0.1 dex, the value measured
for stars, to 0.3 dex, the value measured for molecular and atomic
gas. We have also carried out various tests that show that the 1σ

scatter of Ai is unaffected by the choice of Rav, even if Rav is as
small as 0.3 R25. Hereafter we will denote such galaxy-to-galaxy
scatter with σ gg(i).1

Before focusing on a more important meaning of σ gg (see
Section 2.3), let us test the robustness of the result σ gg(⋆) <

σ gg(gas) further. Is this an artefact of L08’s model-based σ ⋆(R)?
Current integral field unit (IFU) surveys allow measuring the mass-
weighted average of Q⋆(R) over the stellar half-light radius, R50,
but not beyond. This limit is imposed by the sparsity of reliable
σ ⋆ measurements for R ! R50 (Martinsson et al. 2013; Falcón-
Barroso et al. 2017; Mogotsi & Romeo 2019). Using radial profiles

1σ gg(i) can be combined with the total scatter given in Fig. 1, σ tot(i), to

estimate the rms scatter of Qi within a galaxy: σg(i) =
√

σ 2
tot(i) − σ 2

gg(i).
Hence σg(H I) = 0.5 dex, σ g(H2) = 0.2 dex, and σ g(⋆) = 0.05 dex.

MNRAS 491, 4843–4851 (2020)
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The constraint on the disc as a whole

 ➤ 

QRF ≈ 2-3: theoretically motivated AND
fully consistent with observations!

Romeo & Falstad (2013) 1
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The constraint on each disc component

 ➤ 

 ☞  <Q★> ≈ 2-3,  <QHI> ∼ 10,  <QH2> ∼ 10:
fully consistent with observations AND
more predictive than QRF ≈ 2-3!

Romeo (2020) 

5658 A. B. Romeo, O. Agertz, and F. Renaud

Figure 1. Comparison between two popular forms of the SHMR. Galaxies are colour-coded by Hubble stage, and galaxy samples are symbol-coded by the
accuracy of the M⋆, Mh, and j⋆ measurements (see Section 2 for more information): SPARC+++ (solid circles with black outline), SPARC++ (solid circles),
SPARC+ (hollow circles), and LITTLE THINGS (asterisks). The lines in the left-hand and right-hand panels, log (M⋆/Mh) = 0.33log Mh − 5.51 and log (M⋆/Mh)
= 0.41log M⋆ − 5.76, are robust median-based fits to the data points. Statistical information about the data is given in summary form and simplified notation
(see Section 2 for more information).

3 C O M PA R AT I V E A NA LY S I S O F TH E S H M R

The galaxy sample described in Section 2 is especially appropriate
for analysing the SHMR. SPARC is one of the largest collection
of galaxies with both high-quality rotation curves and near-infrared
surface photometry (Lelli et al. 2016). This allows measuring M⋆

and Mh accurately via rotation curve decomposition (P19). The
LITTLE THINGS galaxies included in the sample also have reliable
measurements of M⋆ and Mh, again derived via rotation curve
decomposition (Iorio et al. 2017; Read et al. 2017). So, although
our sample does not contain elliptical galaxies by construction,
it stretches across all other morphological types (S0–BCD) with
high data quality. This allows us to perform a detailed comparative
analysis of the SHMR, and thus to probe the similarities and the
differences between two popular forms of the SHMR and our scaling
relation. This section presents the results of such an analysis.

3.1 Two popular forms of the SHMR

The SHMR has been massively studied adopting two alternative
parametrizations: M⋆/Mh versus Mh (e.g. Leauthaud et al. 2012;
Behroozi, Wechsler & Conroy 2013; Moster, Naab & White 2013;
Rodrı́guez-Puebla et al. 2015; van Uitert et al. 2016; Girelli et al.
2020), and/or M⋆/Mh versus M⋆ (e.g. Dutton et al. 2010; Leauthaud
et al. 2012; van Uitert et al. 2016; Lapi, Salucci & Danese 2018;
P19). To the best of our knowledge, these two relations have not yet
been compared using data of such high quality as those described in
Section 2. Here, we perform such a comparison.

Fig. 1 and the statistical information shown in the two panels
illustrate that the two popular forms of the SHMR are not at all
equivalent. M⋆/Mh versus Mh is less constrained than M⋆/Mh versus
M⋆, as indicated for instance by its larger 1σ scatter. This is true
whether we consider the whole galaxy sample or SPARC+++, i.e.
the galaxies with most accurate measurements of M⋆ and Mh (as well
as j⋆). Indeed, M⋆/Mh versus Mh scatters less in SPARC+++ (SDrob

≈ 0.4 dex) than in the whole sample (SDrob ≈ 0.5 dex), but not as
little as M⋆/Mh versus M⋆ (SDrob ≈ 0.3 dex).

To understand why M⋆/Mh versus Mh is poorly constrained and
learn how to generate an SHMR that is tighter than M⋆/Mh versus
M⋆, we need to look at the SHMR from a different perspective. We
will do this in Sections 3.2 and 3.3.

3.2 Disc gravitational instability as a driver of galaxy scaling
relations

As pointed out in Section 1, Romeo (2020) demonstrated that disc
gravitational instability is a driver of galaxy scaling relations. Here,
we write down the key equation of that paper, and explain how one
can use it for generating new physically motivated scaling relations.
In Section 3.3, we will illustrate the usefulness of such an approach
in the context of the SHMR.

The origin of such relations is the low galaxy-to-galaxy variance
of Toomre’s (1964) Q stability parameter, which leads to Romeo’s
(2020) key equation:

ji σ̂i

GMi

≈ 1. (1)

Note that this is not a marginal stability condition, but a tight
statistical relation between mass (M), specific angular momentum
(j ≡ J/M), and velocity dispersion (σ̂ ) for each baryonic component
in the disc plus bulge: atomic gas (i = H I), molecular gas (i = H2),
and stars (i = ⋆). More precisely, σ̂i is the radial velocity dispersion
of component i, σ i, properly averaged and rescaled. This quantity can
be evaluated using two alternative equations, depending on whether
there are reliable σ i measurements available or not. Unfortunately,
such measurements are highly non-trivial (e.g. Ianjamasimanana, de
Blok & Heald 2017; Marchuk & Sotnikova 2017), hence very sparse
(e.g. Romeo & Mogotsi 2017; Mogotsi & Romeo 2019). Therefore,
if one wants to analyse a large galaxy sample, then the appropriate

MNRAS 499, 5656–5664 (2020)
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Falstad ( 2013 ) Q RF stability parameter. Romeo & Mogotsi ( 2017 , 
2018 ) did so and, in spite of using different galaxy samples and 
different statistical methods, they found a similar result: Q RF ≈ 2, 
with a scatter of ≈ 0.2 dex. This means that galaxy discs are well 
self-regulated. Indeed, the radial distribution of Q RF is remarkably 
flat up to galactocentric distances as large as the optical radius, and 
its median value ( ≈2) is consistent with the destabilizing effects of 
non-axisymmetric perturbations and gas dissipation (see fig. 3 and 
section 3 of Romeo & Mogotsi 2017 ). Similar results have been found 
using state-of-the-art simulations of disc galaxy evolution (Renaud, 
Romeo & Agertz 2021 ; Ejdetj ̈arn et al. 2022 ). 

To further understand how self-regulated galaxy discs are, one 
should analyse in detail the building blocks of Q RF , i.e. the Q 
parameters of stars, atomic and molecular gas: Q i = κσ i / πG $ i ( i = 
%, H I , H 2 ). Romeo ( 2020 ) did so and showed that the radial distribu- 
tion of Q i changes dramatically not only from stars to gas, but also 
between the atomic and molecular gas phases (see his fig. 1). He 
also analysed the mass-weighted average of Q i over the disc, 〈 Q i 〉 , 
and found that the median of 〈 Q i 〉 o v er the galaxy sample is ≈2–3 
for stars and ∼10 for atomic/molecular gas, while the 1 σ scatter 
is ≈0.2 dex for all the components. This means that, despite the 
diverse phenomenology of Q , galaxy discs are so well self-regulated 
that each disc component has its own characteristic value of 〈 Q 〉 . 
Indeed, this is true for disc galaxies of all morphological types, from 
lenticulars to blue compact dwarfs, at least if one considers their 
stellar and atomic gas components (see fig. 2 of Romeo et al. 2020 
and fig. 4 of Romeo 2020 , respectively). 

Finally, note that there is a relation between 〈 Q 〉 and the ELN 
parameter: 〈 Q 〉 ∝ jσ/GM ∝ E 2 σ/V (Romeo & Mogotsi 2018 ). 
Hence 〈 Q 〉 can be regarded as an improved version of E that takes into 
account the disc velocity dispersion, which is an important ingredient 
missing from E (Athanassoula 2008 ). Note also that 〈 Q 〉 can easily 
be corrected so as to take into account the vertical structure of the 
disc (Romeo & Mogotsi 2018 ), but that correction cancels out in the 
final results (Romeo 2020 ). 
4.2.2 Do bars have any impact on 〈 Q % 〉 or 〈 Q H I 〉 ? 
An aspect of the angular momentum problem that connects bar 
structure in galaxies with the self-regulation of galaxy discs concerns 
the impact that bars may have on the characteristic values of 〈 Q 〉 
discussed abo v e. This clearly deserv es to be explored, since bars 
are well-kno wn dri vers of secular e volution in disc galaxies (see, 
e.g. Gadotti 2009 ; Combes 2011 ; Athanassoula 2013 ; Kormendy 
2013 ). In fact, bars are not rigid structures that possess a fixed 
amount of energy and angular momentum. Bars are complex adaptive 
systems that grow and sustain themselves at the expense of the 
gravitational potential energy of the galaxy, and that transfer angular 
momentum to the outer disc and to the halo during the whole process 
of bar formation and evolution. Spiral arms also transfer angular 
momentum to the outer disc, but they do it less efficiently than bars 
(see references abo v e). 

Our analysis is based on Romeo’s ( 2020 ) key equation, which 
naturally connects with the analysis carried out in previous sections: 
j i ̂  σi 
GM i ≈ 1 for i = %, H I , H 2 . (11) 
This is a tight statistical relation between mass ( M ), specific angular 
momentum ( j ), and velocity dispersion ( ̂  σ ) for each baryonic compo- 
nent in the disc plus bulge: stars ( i = % ), atomic hydrogen + helium 
gas ( i = H I ) and molecular hydrogen + helium gas ( i = H 2 ). To 

make good use of equation ( 11 ), one needs to understand two key 
points: 

(i) j i ̂  σi /GM i is a normalized proxy for 〈 Q i 〉 , which itself is more 
difficult to evaluate accurately and approximate analytically. The 
normalization is such that j i ̂  σi /GM i ≈ 1 corresponds to 〈 Q % 〉 ≈
2–3, 〈 Q H I 〉 ∼ 10 and 〈 Q H2 〉 ∼ 10. These values are parameter- 
free theoretical predictions that have an expected accuracy of about 
0.2 dex (see section 2 of Romeo 2020 ). We will make use of such 
predictions when presenting the results of our analysis, so as to 
translate from j i ̂  σi /GM i into 〈 Q i 〉 . 

(ii) ˆ σi is the radial velocity dispersion of component i , σ i , properly 
averaged and rescaled. This quantity can be e v aluated using two 
alternative equations, depending on whether there are reliable σ i 
measurements available or not. Unfortunately, such measurements 
are highly non-trivial (e.g. Ianjamasimanana, de Blok & Heald 2017 ; 
Marchuk & Sotnikova 2017 ), hence very sparse (e.g. Romeo & 
Mogotsi 2017 ; Mogotsi & Romeo 2019 ). Therefore, if one wants 
to analyse a large galaxy sample, then the appropriate equation to 
use is 
ˆ σi ≈

 
 
 

130 km s −1 × ( M % / 10 10 . 6 M () 0 . 5 if i = %, 
11 km s −1 if i = H I , 
8 km s −1 if i = H 2 . (12) 

Note that these are not observationally motivated values of the stellar 
and gas velocity dispersions, but rigorously derived values of the 
velocity dispersion-based quantity ˆ σi (see section 2 of Romeo 2020 ). 
Our analysis is based on both equations ( 11 ) and ( 12 ). 

Equation ( 11 ), when combined with equation ( 12 ), shows a 
statistical scatter of about 0.2 dex (Romeo 2020 ; Romeo et al. 
2020 ), which hides a slight systematic trend with gas mass frac- 
tion (see fig. 3 of Romeo et al. 2020 ), also detected by another 
careful analysis (Mancera Pi ̃ na et al. 2021b ). That trend does 
not affect the usefulness of Eqs ( 11 ) and ( 12 ), which has been 
highlighted by Romeo ( 2020 ) and Romeo et al. ( 2020 ), and con- 
firmed by independent investigations (e.g. Kurapati et al. 2021 ; 
Bouch ́e et al. 2022 ). Hereafter, we will make use of such equa- 
tions without considering molecular gas, since CO data are not 
available for most galaxies of our sample, as already mentioned in 
Section 2.2 . 

Let us now analyse in detail how barred/non-barred disc galaxies 
self-regulate their stellar and atomic gas components via local 
gravitational instabilities. The first part of our analysis is illustrated 
in Fig. 4 , where each panel shows the predicted value of j i ̂  σi /GM i 
(magenta line), the corresponding approximate value of 〈 Q i 〉 , the 
observed 1 σ scatter (pink region), as well as statistical information 
about the barred and non-barred data sets: their ‘bias’ (median offset 
from the prediction), and their ‘variance’ (robust standard deviation 
from the median trend). Such statistical diagnostics disclose a weak 
systematic effect, which is also visually detectable as a small vertical 
offset between the orange and azure data points: barred galaxies 
self-regulate to values of 〈 Q H I 〉 (values of 〈 Q % 〉 ) that are typically 
≈0.2 dex smaller ( ≈0.1 dex larger) than those of non-barred galaxies. 
In contrast, both types of galaxies exhibit the same cosmic variance 
in 〈 Q 〉 : ≈ 0.2 dex, a uni versal v alue for both stars and atomic 
gas. 

The results presented abo v e are reliable because they are based 
on robust statistics, and because the barred/non-barred data sets 
are statistically unbiased (see Section 2.2 for more information). 
Furthermore, such results are new and unexpected. Indeed, we 
expected to find a clearer separation between barred and non-barred 
galaxies than that shown in Fig. 4 , given that bars are expected to 
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Figure 2. Our scaling relation, M⋆/Mh versus GMh/j⋆σ̂⋆, and the impact of suppressing j⋆ and/or σ̂⋆. Galaxies are colour-coded by Hubble stage, and galaxy
samples are denoted as in Section 2. In the top-left panel, the diagonal line is the prediction based on disc gravitational instability, and statistical information
about the data is given in summary form and simplified notation (see Section 2 for more information).

two important facts. First, M⋆ is a more reliable estimator of M⋆/Mh

than Mh: it is unbiased, and it also has less scatter. Secondly, the
large scatter of M⋆/Mh versus Mh hides a weak residual trend with
stellar mass and reverse trend with gas mass fraction, i.e. massive
gas-poor galaxies (lenticulars and early-type spirals) tend to have a
higher stellar-to-halo mass ratio than expected, and vice versa for
low-mass gas-rich galaxies (late-type spirals and dwarfs).

4 O U R D I AG N O S T I C S A S A C R I T I C A L T E S T
F O R SI M U L AT I O N S O F G A L A X Y F O R M AT I O N
A N D E VO L U T I O N

The SHMR is not only one of the main sources of information
we have on the galaxy–halo connection, but also an important
indicator of the performance of galaxy formation models (e.g. Dutton

et al. 2011; Read et al. 2017; Forbes, Krumholz & Speagle 2019;
Agertz et al. 2020; Marasco et al. 2020, hereafter M20; Rodrı́guez-
Puebla et al. 2020; Zanisi et al. 2020). Here, we join this effort
and demonstrate the importance of our results for the simulation
community.

We focus on central, regularly rotating, massive (M⋆ > 5 ×
1010 M⊙) disc galaxies at redshift z = 0, and compare the result
from the SPARC data set with the results from two recent cosmolog-
ical hydrodynamical simulations: run Ref-L0100N1504 of EAGLE
(Schaye et al. 2015), and run TNG100-1 of IllustrisTNG (Pillepich
et al. 2018). We use the three galaxy samples analysed by M20,
which were carefully selected so as to make such a comparison
unbiased (see section 2 of M20). In particular, such galaxy samples
cover a similar range of stellar masses (M⋆ ≈ 1010.7–11.4 M⊙), hence
they probe the same regime of the stellar mass function. M20

MNRAS 499, 5656–5664 (2020)
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THINGS, WHISP and LITTLE THINGS4848 A. B. Romeo

Figure 4. Our scaling relation for the relative mass content of atomic gas, and the impact of suppressing jH I (this is the popular MH I/M! versus M! scaling
relation). Galaxy samples and statistics are denoted as in Section 3. The diagonal line in the left-hand panel is the prediction based on disc gravitational
instability, while the line in the right-hand panel, log(MH I/M!) = −0.53 log M! + 4.83, is a robust median-based fit to the data points.

4.2 Scaling relation for the relative mass content of cold gas

To test our atomic gas scaling relation, we use another common
parametrization: MH I/M!, the atomic gas-to-stellar mass ratio.
Multiplying the i = H I component of equation (5) by this quantity,
we get the predicted scaling relation, MH I/M! = jH I σ̂H I/GM!,
which can be rewritten as log(MH I/M!) = − log(GM!/jH I σ̂H I).
Expressed in this form, our scaling relation can be directly compared
with the popular log(MH I/M!) versus log M! scaling relation,
systematically studied by the teams of the GALEX Arecibo SDSS
Survey (GASS; e.g. Catinella et al. 2010, 2012, 2018), the Arecibo
Legacy Fast ALFA Survey (ALFALFA; e.g. Huang et al. 2012;
Papastergis et al. 2012), and other surveys (e.g. Cortese et al. 2011;
Peeples & Shankar 2011). More importantly, such a comparison
allows quantifying the impact of specific angular momentum on
the atomic gas scaling relation. In fact, the dependence on velocity
dispersion is nearly negligible: for all galaxy samples except one
[Sp (L08+)], σ̂H I is fixed (see equation 7) since there are no
published measurements of σH I (see Sections 2.3 and 3). We have
checked that fixing σ̂H I even for Sp (L08+) leaves the statistical
measurements unchanged.

Fig. 4 and the statistical measurements shown in the two panels
illustrate that our scaling relation is more constrained than MH I/M!

versus M!. This may seem obvious because MH I/M! versus M!

is one of the gas scaling relations that have largest scatter (e.g.
Catinella et al. 2018),2 and because it has been demonstrated that
MH I/M! versus M! is ‘not physical’ but driven by the relative
fraction of star-forming and quiescent galaxies as a function of

2The MH I/M! versus M! relation presented here shows significantly less
scatter than that presented by the GASS team (e.g. Catinella et al. 2018), who
used a stellar mass selected galaxy sample that is representative in terms of
H I content. This mismatch means that our galaxy sample, which is limited
by the availability of accurate measurements of specific angular momentum,
is not fully representative of the H I properties of the galaxy population in
our stellar mass interval. Obviously, our work shares this limitation among
all other works that have not used fully representative galaxy samples.

stellar mass (e.g. Brown et al. 2015). Note, however, that it is not
at all obvious that a theoretical approach like ours, based on first
principles and on a simple statistical analysis, succeeds in predicting
both the slope and the zero-point of the atomic gas scaling relation
across four orders of magnitude in MH I/M!, to within 0.2 dex,
and without any free parameter or fine-tuning. These facts speak
clearly. In particular, the small scatter of our scaling relation tells us
that the mass-averaged gravitational instability properties of galaxy
discs are remarkably uniform across the sequence Sa–dIrr, and that
specific angular momentum has a significant impact on the atomic
gas scaling relation.

A similar conclusion about specific angular momentum was
drawn by Obreschkow et al. (2016), so it is interesting to compare
our scaling relation with theirs: fH I = min{1, 2.5 q1.12}, where
q = jdisc σH I/GMdisc and σH I = 10 km s−1. To be precise, their
stability model predicts that fH I = 2.5 q1.12. The upper limit on
fH I was imposed to avoid mass ‘fractions’ fH I > 1 for q > 0.44.
Since this upper limit is not part of the prediction, we do not
consider it. In addition, since the fH I parametrization is open to the
criticism pointed out in Section 4.1, we rewrite the Obreschkow et al.
(2016) relation as MH I/M! = 2.5 q1.12 (Mdisc/M!), which can now
be directly compared with ours: MH I/M! = jH I σ̂H I/GM!. Fig. 5
and the statistical measurements shown in the two panels illustrate
that the Obreschkow et al. (2016) relation has the same correlation
strength and significance as ours, but overpredicts MH I/M! in dwarf
irregulars significantly, on average by 0.3 dex (a factor of 2). Our
scaling relation does not show such a bias, and is thus a more reliable
atomic gas tracer.

By analogy with the atomic gas case, our molecular gas scaling
relation can be written as log(MH2/M!) = − log(GM!/jH2 σ̂H2 ).
This scaling relation could, in principle, be directly compared
with the popular log (MH2 /M!) versus log M! scaling relation,
systematically studied by the teams of the CO Legacy Database for
the GALEX Arecibo SDSS Survey (COLD GASS; e.g. Saintonge
et al. 2011, 2017), the Herschel Reference Survey (HRS; e.g. Boselli
et al. 2014), and other surveys (e.g. Accurso et al. 2017; Gao et al.
2019; Liu et al. 2019). Unfortunately, as shown by Fig. 3 and

MNRAS 491, 4843–4851 (2020)
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Figure 5. Self-regulation of galaxy discs driven by local gravitational instabilities: robustness of the results. This is similar to Fig. 4 , but here the left-hand 
and right-hand panels show data from two of the largest samples of galaxies with quality-assessed measurements of M ! , j ! (142 galaxies) and M H I , j H I (152 
galaxies), respectively. See item (i) of Section 4.2.2 for more information. 

Figure 6. Self-regulation of galaxy discs driven by local gravitational instabilities: statistical validity and significance of the results. The galaxy sample is the 
same as in Fig. 4 , but here the barred and non-barred data sets are analysed using a variety of statistical diagnostics (‘uncertain’ galaxies are not considered). Each 
panel shows the median values (solid lines), robust standard errors (thin rectangles), and robust standard deviations (thick rectangles) of log j i ̂  σi /GM i ( i = !, H I ) 
for the two data sets, together with the predicted value of 〈 Q i 〉 (Romeo 2020 ). Also shown are sev eral comparativ e tests. See item (ii) of Section 4.2.2 for more 
information. 
angular momentum, j b / j h , depends on the galaxy formation efficiency, 
M b / M h , and varies on average as j b / j h ∝ ( M b / M h ) 0.5 . This correlation 
is moderately strong but very significant (e.g. Spearman’s ρ ≈ 0.5 
and p ρ ∼ 10 −7 ). In contrast, j b / j h does not show any particularly 

significant ( p ρ ! 10 −4 ) correlation with basic galaxy properties like 
j h , M h or their baryonic counterparts. 

(ii) Stars have about 40 per cent less specific angular momentum 
than the halo, whereas atomic gas has about 20 per cent more (see 
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Figure 5. Self-regulation of galaxy discs driven by local gravitational instabilities: robustness of the results. This is similar to Fig. 4 , but here the left-hand 
and right-hand panels show data from two of the largest samples of galaxies with quality-assessed measurements of M ! , j ! (142 galaxies) and M H I , j H I (152 
galaxies), respectively. See item (i) of Section 4.2.2 for more information. 

Figure 6. Self-regulation of galaxy discs driven by local gravitational instabilities: statistical validity and significance of the results. The galaxy sample is the 
same as in Fig. 4 , but here the barred and non-barred data sets are analysed using a variety of statistical diagnostics (‘uncertain’ galaxies are not considered). Each 
panel shows the median values (solid lines), robust standard errors (thin rectangles), and robust standard deviations (thick rectangles) of log j i ̂  σi /GM i ( i = !, H I ) 
for the two data sets, together with the predicted value of 〈 Q i 〉 (Romeo 2020 ). Also shown are sev eral comparativ e tests. See item (ii) of Section 4.2.2 for more 
information. 
angular momentum, j b / j h , depends on the galaxy formation efficiency, 
M b / M h , and varies on average as j b / j h ∝ ( M b / M h ) 0.5 . This correlation 
is moderately strong but very significant (e.g. Spearman’s ρ ≈ 0.5 
and p ρ ∼ 10 −7 ). In contrast, j b / j h does not show any particularly 

significant ( p ρ ! 10 −4 ) correlation with basic galaxy properties like 
j h , M h or their baryonic counterparts. 

(ii) Stars have about 40 per cent less specific angular momentum 
than the halo, whereas atomic gas has about 20 per cent more (see 
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What do we learn?

 ➤ It is amazingly challenging to characterize 
barred galaxies from a gravitational instability 
point of view!

 ➤ This has important implications especially for 
semi-analytic modelling of galaxy formation and 
evolution.



But this is not the end of the story!

 ➤ Amazingly, `bars within bars´ are easier to 
characterize …

 ➤ not as global, but as
local gravitational instabilities,

 ➤ using not the Q stability parameter, but
the characteristic instability scale: 𝜆c = 2𝜋 𝜎/𝜅!



Romeo & Fathi (2015), MNRAS, 451, 3107

NGC 6946: a triple-barred galaxy



NGC 1068: a double-barred galaxy

Romeo & Fathi (2016), MNRAS, 460, 2360



CONCLUSION

 ● Our analysis solves important aspects of the 
angular momentum problem, and imposes tight 
constraints not only on j itself but also on its 
connection with galaxy morphology, bar 
structure and disc gravitational instability.

 ➤ Our results on barred galaxies are of 
particular interest for semi-analytic modelling of 
galaxy formation and evolution (see Sect. 5 of 
Romeo et al. 2023).



This is not yet the end of the story!

 ● Let me advertise two other possible talks:

 ➤ Disc gravitational instability has a strong 
impact on galaxy scaling relations

 ➤ State-of-the-art diagnostics for detecting 
gravitational instabilities in galaxy discs

Email me if you are interested!



Extra slides

<Q> versus ELN parameter

jb/jh versus basic galaxy properties

j★/jh versus basic galaxy properties

jHI/jh versus basic galaxy properties

λ = log-normal versus λ = constant

Further test of the ELN criterion: HI vs ★

●

●

●

●

●

●
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Falstad ( 2013 ) Q RF stability parameter. Romeo & Mogotsi ( 2017 , 
2018 ) did so and, in spite of using different galaxy samples and 
different statistical methods, they found a similar result: Q RF ≈ 2, 
with a scatter of ≈ 0.2 dex. This means that galaxy discs are well 
self-regulated. Indeed, the radial distribution of Q RF is remarkably 
flat up to galactocentric distances as large as the optical radius, and 
its median value ( ≈2) is consistent with the destabilizing effects of 
non-axisymmetric perturbations and gas dissipation (see fig. 3 and 
section 3 of Romeo & Mogotsi 2017 ). Similar results have been found 
using state-of-the-art simulations of disc galaxy evolution (Renaud, 
Romeo & Agertz 2021 ; Ejdetj ̈arn et al. 2022 ). 

To further understand how self-regulated galaxy discs are, one 
should analyse in detail the building blocks of Q RF , i.e. the Q 
parameters of stars, atomic and molecular gas: Q i = κσ i / πG $ i ( i = 
%, H I , H 2 ). Romeo ( 2020 ) did so and showed that the radial distribu- 
tion of Q i changes dramatically not only from stars to gas, but also 
between the atomic and molecular gas phases (see his fig. 1). He 
also analysed the mass-weighted average of Q i over the disc, 〈 Q i 〉 , 
and found that the median of 〈 Q i 〉 o v er the galaxy sample is ≈2–3 
for stars and ∼10 for atomic/molecular gas, while the 1 σ scatter 
is ≈0.2 dex for all the components. This means that, despite the 
diverse phenomenology of Q , galaxy discs are so well self-regulated 
that each disc component has its own characteristic value of 〈 Q 〉 . 
Indeed, this is true for disc galaxies of all morphological types, from 
lenticulars to blue compact dwarfs, at least if one considers their 
stellar and atomic gas components (see fig. 2 of Romeo et al. 2020 
and fig. 4 of Romeo 2020 , respectively). 

Finally, note that there is a relation between 〈 Q 〉 and the ELN 
parameter: 〈 Q 〉 ∝ jσ/GM ∝ E 2 σ/V (Romeo & Mogotsi 2018 ). 
Hence 〈 Q 〉 can be regarded as an improved version of E that takes into 
account the disc velocity dispersion, which is an important ingredient 
missing from E (Athanassoula 2008 ). Note also that 〈 Q 〉 can easily 
be corrected so as to take into account the vertical structure of the 
disc (Romeo & Mogotsi 2018 ), but that correction cancels out in the 
final results (Romeo 2020 ). 
4.2.2 Do bars have any impact on 〈 Q % 〉 or 〈 Q H I 〉 ? 
An aspect of the angular momentum problem that connects bar 
structure in galaxies with the self-regulation of galaxy discs concerns 
the impact that bars may have on the characteristic values of 〈 Q 〉 
discussed abo v e. This clearly deserv es to be explored, since bars 
are well-kno wn dri vers of secular e volution in disc galaxies (see, 
e.g. Gadotti 2009 ; Combes 2011 ; Athanassoula 2013 ; Kormendy 
2013 ). In fact, bars are not rigid structures that possess a fixed 
amount of energy and angular momentum. Bars are complex adaptive 
systems that grow and sustain themselves at the expense of the 
gravitational potential energy of the galaxy, and that transfer angular 
momentum to the outer disc and to the halo during the whole process 
of bar formation and evolution. Spiral arms also transfer angular 
momentum to the outer disc, but they do it less efficiently than bars 
(see references abo v e). 

Our analysis is based on Romeo’s ( 2020 ) key equation, which 
naturally connects with the analysis carried out in previous sections: 
j i ̂  σi 
GM i ≈ 1 for i = %, H I , H 2 . (11) 
This is a tight statistical relation between mass ( M ), specific angular 
momentum ( j ), and velocity dispersion ( ̂  σ ) for each baryonic compo- 
nent in the disc plus bulge: stars ( i = % ), atomic hydrogen + helium 
gas ( i = H I ) and molecular hydrogen + helium gas ( i = H 2 ). To 

make good use of equation ( 11 ), one needs to understand two key 
points: 

(i) j i ̂  σi /GM i is a normalized proxy for 〈 Q i 〉 , which itself is more 
difficult to evaluate accurately and approximate analytically. The 
normalization is such that j i ̂  σi /GM i ≈ 1 corresponds to 〈 Q % 〉 ≈
2–3, 〈 Q H I 〉 ∼ 10 and 〈 Q H2 〉 ∼ 10. These values are parameter- 
free theoretical predictions that have an expected accuracy of about 
0.2 dex (see section 2 of Romeo 2020 ). We will make use of such 
predictions when presenting the results of our analysis, so as to 
translate from j i ̂  σi /GM i into 〈 Q i 〉 . 

(ii) ˆ σi is the radial velocity dispersion of component i , σ i , properly 
averaged and rescaled. This quantity can be e v aluated using two 
alternative equations, depending on whether there are reliable σ i 
measurements available or not. Unfortunately, such measurements 
are highly non-trivial (e.g. Ianjamasimanana, de Blok & Heald 2017 ; 
Marchuk & Sotnikova 2017 ), hence very sparse (e.g. Romeo & 
Mogotsi 2017 ; Mogotsi & Romeo 2019 ). Therefore, if one wants 
to analyse a large galaxy sample, then the appropriate equation to 
use is 
ˆ σi ≈

 
 
 

130 km s −1 × ( M % / 10 10 . 6 M () 0 . 5 if i = %, 
11 km s −1 if i = H I , 
8 km s −1 if i = H 2 . (12) 

Note that these are not observationally motivated values of the stellar 
and gas velocity dispersions, but rigorously derived values of the 
velocity dispersion-based quantity ˆ σi (see section 2 of Romeo 2020 ). 
Our analysis is based on both equations ( 11 ) and ( 12 ). 

Equation ( 11 ), when combined with equation ( 12 ), shows a 
statistical scatter of about 0.2 dex (Romeo 2020 ; Romeo et al. 
2020 ), which hides a slight systematic trend with gas mass frac- 
tion (see fig. 3 of Romeo et al. 2020 ), also detected by another 
careful analysis (Mancera Pi ̃ na et al. 2021b ). That trend does 
not affect the usefulness of Eqs ( 11 ) and ( 12 ), which has been 
highlighted by Romeo ( 2020 ) and Romeo et al. ( 2020 ), and con- 
firmed by independent investigations (e.g. Kurapati et al. 2021 ; 
Bouch ́e et al. 2022 ). Hereafter, we will make use of such equa- 
tions without considering molecular gas, since CO data are not 
available for most galaxies of our sample, as already mentioned in 
Section 2.2 . 

Let us now analyse in detail how barred/non-barred disc galaxies 
self-regulate their stellar and atomic gas components via local 
gravitational instabilities. The first part of our analysis is illustrated 
in Fig. 4 , where each panel shows the predicted value of j i ̂  σi /GM i 
(magenta line), the corresponding approximate value of 〈 Q i 〉 , the 
observed 1 σ scatter (pink region), as well as statistical information 
about the barred and non-barred data sets: their ‘bias’ (median offset 
from the prediction), and their ‘variance’ (robust standard deviation 
from the median trend). Such statistical diagnostics disclose a weak 
systematic effect, which is also visually detectable as a small vertical 
offset between the orange and azure data points: barred galaxies 
self-regulate to values of 〈 Q H I 〉 (values of 〈 Q % 〉 ) that are typically 
≈0.2 dex smaller ( ≈0.1 dex larger) than those of non-barred galaxies. 
In contrast, both types of galaxies exhibit the same cosmic variance 
in 〈 Q 〉 : ≈ 0.2 dex, a uni versal v alue for both stars and atomic 
gas. 

The results presented abo v e are reliable because they are based 
on robust statistics, and because the barred/non-barred data sets 
are statistically unbiased (see Section 2.2 for more information). 
Furthermore, such results are new and unexpected. Indeed, we 
expected to find a clearer separation between barred and non-barred 
galaxies than that shown in Fig. 4 , given that bars are expected to 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/1/1002/6775111 by guest on 02 January 2023

Romeo & Mogotsi (2018), MNRAS, 480, L23

 ➤ <Q> can be regarded as an improved version 
of 𝓔 that takes into account the disc velocity 
dispersion, which is an important ingredient 
missing from 𝓔 (Athanassoula 2008).
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Figure A2. The fraction of specific angular momentum retained by baryons ( j b / j h ) versus basic galaxy properties. These correlations are weaker and less 
significant than those shown in Fig. 1 . The galaxy sample and the data are described in Section 2 . Galaxies are colour-coded by Hubble stage and symbol-coded 
by their parent samples: SPARC (solid circles with black ouline) and LITTLE THINGS (asterisks). The solid lines are robust median-based fits to the data 
points (see Section 2.3 for more information). The dashed lines indicate conservation of specific angular momentum, i.e. that baryons have retained the same 
amount of specific angular momentum as the host dark matter halo. Statistical information about the data is given in summary form and simplified notation (see 
Section 2.3 for more information). 
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Figure A3. Same as Fig. A2 , but for the fraction of specific angular momentum retained by the stellar component ( j ! / j h ). 
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Figure A4. Same as Fig. A2 , but for the fraction of specific angular momentum retained by the atomic gas component ( j H I / j h ). 
APPENDIX  B:  A D D I T I O NA L  TESTS  
This appendix describes three additional tests. 

The first test, mentioned in Section 2.2 , probes two numerical 
aspects of the problem: (i) the effect of varying the random realization 
of λ on the correlations between j h , M h and M b ; and (ii) the impact 
of suppressing the natural variance of λ on such correlations. To 
probe (i), we run 10 Monte Carlo simulations of j h = j h ( λ) for our 
galaxy sample, i.e. we randomly generate 10 sets of 91 values of λ
from equation ( 3 ), setting λ0 = 0.035 and σ = 0.50 (0.22 dex) as in 
Section 2.2 , and compute j h from equation ( 4 ). For each simulation, 
we analyse j h versus M h and j h versus M b using the statistics described 
in Section 2.3 . We then e v aluate the mean and the standard deviation 
of each statistic o v er the ensemble of simulations. To probe (ii), 
we set λ = 0.035 in equation ( 4 ), and analyse the j h –M h and j h –
M b relations using our statistical toolkit. Fig. B1 illustrates all such 
information, including the fiducial random realization set used in 
this paper, which is highlighted in orange o v er a ‘sea’ of azure data 

points. Our test demonstrates that varying the random realization 
of λ has a weak ( ! 10 per cent ) effect on the results, whereas 
suppressing the natural variance of λ artificially constrains the 
correlations between j h and other fundamental galaxy properties like 
M h and M b . 

The second test, mentioned in Section 4.1.2 , checks whether the 
low accuracy found for the ELN criterion is an artefact of using 
the reformulation made by Mo et al. ( 1998 ) [equation (10)], rather 
than the original criterion (Efstathiou et al. 1982 ) [equation (9)]. 
To check this, we need to e v aluate two additional quantities: the 
exponential disc scale length, R d , and the maximum rotation velocity, 
V max . Since there are no publicly available measurements of V max 
for most galaxies of our sample, we use V flat as a proxy for V max , 
where V flat is the velocity along the flat part of the rotation curve. 
R d and V flat are taken from Lelli et al. ( 2016 ) for SPARC galaxies, 
and from Hunter & Elmegreen ( 2006 ) and Iorio et al. ( 2017 ) for 
LITTLE THINGS galaxies, respectively . More precisely , for 8 of 
the 77 SPARC galaxies, V flat is undefined because the rotation curve 
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Figure B1. Left-hand panels: effect of varying the random realization of the halo spin parameter ( λ) on the correlations between halo specific angular momentum 
( j h ), halo mass ( M h ) and baryonic mass ( M b ). Right-hand panels: impact of suppressing the natural variance of λ on such correlations. The galaxy sample 
contains 91 galaxies and is described in Section 2 , together with the data and the statistics. The azure data points correspond to 10 sets of 91 random realizations 
of λ, which are drawn from a lognormal probability distribution with median λ0 = 0.035 and width σ = 0.50 (0.22 dex). The orange data points correspond to 
the fiducial random realization set used in this paper. Statistical information shown in the left-hand panels concerns the azure data points. The value reported for 
each statistic is the mean ± standard deviation evaluated o v er the 10 random realization sets. See Appendix B for more information. 
does not reach a flat part. Hence the galaxy sample used for this test 
contains 83 galaxies in total. Fig. B2 shows that the low accuracy 
found in Section 4.1.2 is not an artefact of using the ELN criterion 
reformulated by Mo et al. ( 1998 ), rather than the original ELN 
criterion itself: Eqs (9) and (10) are almost indistinguishable from a 
statistical point of view. 

The third test, also mentioned in Section 4.1.2 , checks whether it 
is possible to impro v e the accurac y of the ELN criterion by applying 
it to the atomic gas disc, rather than to the stellar disc. Fig. B3 
shows that the accuracy of the ELN criterion is low even in that 
case. 
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Figure B2. Additional test of the ELN criterion: the original criterion (Efstathiou et al. 1982 ) [equation (9)] versus the reformulation made by Mo et al. ( 1998 ) 
[equation (10)]. See Appendix B for more information. 

Figure B3. Additional test of the ELN criterion: atomic gas versus stars. See Appendix B for more information. 
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